转自:https://blog.csdn.net/CatDsy/article/details/81876341

#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define ull unsigned long long
#define mst(a,b) memset((a),(b),sizeof(a))
#define pi acos(-1)
#define pii pair<int,int>
const int INF = 0x3f3f3f3f;
const double eps = 1e-;
const int MAXN = 2e3 + ;
const int MAXM = 2e6 + ;
const ll mod = ; char s[MAXN][MAXN];
ll tot[MAXN][MAXN], same[MAXN][MAXN];
ll pre_tot[MAXN][MAXN], pre_same[MAXN][MAXN]; int main() {
#ifdef local
freopen("data.txt", "r", stdin);
// freopen("data.txt", "w", stdout);
#endif
int t;
scanf("%d",&t);
while(t--) {
int n,m,k;
scanf("%d%d%d",&n,&m,&k);
for(int i = ; i <= n; i++)
scanf("%s",s[i] + );
for(int i = ; i <= n; i++)
pre_tot[i][] = pre_same[i][] = ;
for(int i = ; i <= m; i++) {
tot[][i] = ;
pre_tot[][i] = i;
if(i == || s[][i] != s[][i - ]) same[][i] = ;
else same[][i] = ;
pre_same[][i] = pre_same[][i - ] + same[][i];
}
for(int i = ; i <= n; i++) {
for(int j = ; j <= m; j++) {
int l = max(j - k, ), r = min(j + k, m);
tot[i][j] = (pre_tot[i - ][r] - pre_tot[i - ][l - ] + mod) % mod;
l = max(j - k + , ), r = min(j + k, m);
tot[i][j] = (tot[i][j] - (pre_same[i - ][r] - pre_same[i - ][l - ] + mod) % mod + mod) % mod;
pre_tot[i][j] = (pre_tot[i][j - ] + tot[i][j]) % mod;
if(j == || s[i][j] != s[i][j - ]) same[i][j] = ;
else {
l = max(j - k, ), r = min(j + k - , m);
same[i][j] = (pre_tot[i - ][r] - pre_tot[i - ][l - ] + mod) % mod;
l = max(j - k + , ), r = min(j + k - , m);
same[i][j] = (same[i][j] - (pre_same[i - ][r] - pre_same[i - ][l - ] + mod) % mod + mod) % mod;
}
pre_same[i][j] = (pre_same[i][j - ] + same[i][j]) % mod;
}
}
ll ans = ;
for(int i = ; i <= m; i++)
ans = (ans + tot[n][i] - same[n][i] + mod) % mod;
printf("%lld\n",ans);
}
return ;
}

题目描述:

给定一个N∗MN∗M的01矩阵

K-seam是满足以下条件的整数序列a:

  • |a|=n,ai∈[1,m]|a|=n,ai∈[1,m]
  • |ai−ai+1|≤K,i∈[1,n)|ai−ai+1|≤K,i∈[1,n)

对于第ii行,删除第aiai个数,会得到一个N∗(M−1)N∗(M−1)的矩阵

不同的整数序列可能会得到相同的矩阵

问:可以得到多少种不同的矩阵


题解:

如果无视different的条件 
定义状态:dp[i][j]dp[i][j]——删除第 ii 行第 jj 个数可以得到的矩阵总数 
可推得转移方程如下:

 
dp[i][j]=∑x=j−kj+kdp[i−1][x]dp[i][j]=∑x=j−kj+kdp[i−1][x]

在此基础上,加上different的条件 
定义状态:

  • tot[i][j]tot[i][j]——删除第 ii 行第 jj 个数可以得到的不同的矩阵总数
  • same[i][j]same[i][j]——删除第 ii 行第 jj 个数和删除第 ii 行第 j−1j−1 个数后得到的相同方案数

那么,tot[i][j]tot[i][j]的状态转移方程为:

 
tot[i][j]=∑x=j−kj+ktot[i−1][x]−∑x=j−k+1j+ksame[i−1][x]tot[i][j]=∑x=j−kj+ktot[i−1][x]−∑x=j−k+1j+ksame[i−1][x]

如果 Matrix[i][j]≠Matrix[i][j−1]Matrix[i][j]≠Matrix[i][j−1] 那么,same[i][j]=0same[i][j]=0 
否则,对于第 jj 个和第 j−1j−1 个的转移区间分别为[j−k,j+k][j−k,j+k],[j−1−k,j−1+k][j−1−k,j−1+k],那么它们的交叉区间为[j−k,j−1+k][j−k,j−1+k],即:从该区间内转移得到的方案数会重复计算一次。得到 same[i][j]same[i][j] 的转移方程为:

 
same[i][j]=∑x=j−kj+k−1tot[i−1][x]−∑x=j−k+1j+k−1same[i−1][x]same[i][j]=∑x=j−kj+k−1tot[i−1][x]−∑x=j−k+1j+k−1same[i−1][x]

时间复杂度为O(n∗m2)O(n∗m2),对于∑∑做前缀和优化,时间复杂度降为O(n∗m)O(n∗m)

最后,对于第n行计算总的不同的方案数,即ans=∑tot−∑same

2018多校第九场 HDU 6416 (DP+前缀和优化)的更多相关文章

  1. 2018多校第九场1004(HDU 6415) DP

    本以为是个找规律的题一直没找出来... 题目:给你一个n*m的矩阵和1-n*m个数,问有多少种情况满足纳什均衡的点只有一个.纳什均衡点是指这个元素在所在行和所在列都是最大的. 思路:吉老师直播的思路: ...

  2. 2018多校第九场1010 (HDU6424) 数学

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6424 解法:找规律.因为最多三项,a1^a2^a3可以拆成(a1+2)+(a2+1)*a3,然后建成数 ...

  3. 218多校第九场 HDU 6424 (数学)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6424 题意:定义f(A) = log log log log …. (A个log) n ,g[A,B, ...

  4. HDU 2829 区间DP & 前缀和优化 & 四边形不等式优化

    HDU 2829 区间DP & 前缀和优化 & 四边形不等式优化 n个节点n-1条线性边,炸掉M条边也就是分为m+1个区间 问你各个区间的总策略值最少的炸法 就题目本身而言,中规中矩的 ...

  5. [Codeforces712D] Memory and Scores(DP+前缀和优化)(不用单调队列)

    [Codeforces712D] Memory and Scores(DP+前缀和优化)(不用单调队列) 题面 两个人玩游戏,共进行t轮,每人每轮从[-k,k]中选出一个数字,将其加到自己的总分中.已 ...

  6. T2988 删除数字【状压Dp+前缀和优化】

    Online Judge:从Topcoder搬过来,具体哪一题不清楚 Label:状压Dp+前缀和优化 题目描述 给定两个数A和N,形成一个长度为N+1的序列,(A,A+1,A+2,...,A+N-1 ...

  7. 2018 Multi-University Training Contest 9 杭电多校第九场 (有坑待补)

    咕咕咕了太久  多校博客直接从第三场跳到了第九场orz 见谅见谅(会补的!) 明明最后看下来是dp场 但是硬生生被我们做成了组合数专场…… 听说jls把我们用组合数做的题都用dp来了遍 这里只放了用组 ...

  8. Codeforces 479E. Riding in a Lift (dp + 前缀和优化)

    题目链接:http://codeforces.com/contest/479/problem/E 题意:         给定一个启示的楼层a,有一个不能去的楼层b,对于你可以去的下一个楼层必须满足你 ...

  9. Time Zone 【模拟时区转换】(HDU暑假2018多校第一场)

    传送门:http://acm.hdu.edu.cn/showproblem.php?pid=6308 Time Zone Time Limit: 2000/1000 MS (Java/Others)  ...

随机推荐

  1. [百家号]铁流:华为Hi1620发布 自研内核还是ARM改?

    华为Hi1620发布 自研内核还是ARM改? https://baijiahao.baidu.com/s?id=1618735211251270521&wfr=spider&for=p ...

  2. 记录一次hadoop2.8.4版本RM接入zk ha问题

    背景: 公司将线上hadoop RM接入ZK 实现高可用 但ZK Znode 默认存储1M,当存储数据量大时候可能导致线上业务的崩溃 处理方案如下: 1,修改ZK配置 增加默认存储上限 2,修改RM数 ...

  3. 二叉查找树 & B(B-)树 & B+树 & B*树

    一 二叉查找树 1 特点 (1)所有非叶子结点至多拥有两个子节点, left和right (2)一个结点存储一个关键字 (3)非叶子结点的左指针指向小于其关键字的子树,右指针指向大于其关键字的子树 2 ...

  4. THUSC2013

    魔塔 BZOJ 设每个敌人的属性值为\(hp_i,atk_i,def_i\).自己的为\(HP,ATK,DEF\) 首先我们可以发现顺序是没有影响的. 然后我们可以发现合适的\(ATK\)一定满足\( ...

  5. while循环,格式化输出,运算符及编码初识

    一.while循环 1.基本循环(死循环) while 条件: 循环体 2.使用while计数 count = 0 # 数字里面非零的都为True while True: count = count ...

  6. 20190716-Python网络数据采集/第 2 章 复杂HTML解析

    # P29/9# 解析,要考虑到可持续性问题,对方反爬修改后,仍继续有效,方为优秀代码# 解析一个目标网页前,需要做到以下几点:(1)明确目标内容:(2)寻找“打印此页”的链接,或查看网站有无HTML ...

  7. [Lua]LuaAPI整理

    ref :https://blog.csdn.net/ouyangshima/article/details/43339571   LUA和C/C++的沟通桥梁——栈 Lua生来就是为了和C交互的,因 ...

  8. [转载]SSD原理与实现

    [转载]SSD原理与实现 这里只mark一下,对原论文讲解的很好的博文 https://zhuanlan.zhihu.com/p/33544892 这里有一个关于SSD的很好的程序实现,readme里 ...

  9. iOS UIControl 事件的说明(转)

    在控件事件中,简单解释下下面几个事件. 说明:由于是在“iOS 模拟器”中测试的,所以不能用手指,只能用鼠标. 1)UIControlEventTouchDown 指鼠标左键按下(注:只是“按下”)的 ...

  10. 【图像处理 】 一、OSTU分割法

    图像中像素的灰度值小于阈值T的像素个数记作N0,像素灰度大于阈值T的像素个数记作N1,则有: 图像大小:M*N T为二值化的阈值: N0为灰度小于T的像素的个数,N0的平均灰度为μ0 N1 为灰度大于 ...