题目描述

There is an array of length n, containing only positive numbers.
Now you can add all numbers by 1 many times. Please find out the minimum times you need to perform to obtain an array whose greatest common divisor(gcd) is larger than 1 or state that it is impossible.
You should notice that if you want to add one number by 1, you need to add all numbers by 1 at the same time.

输入

The first line of input file contains an integer T (1≤T≤20), describing the number of test cases.
Then there are 2×T lines, with every two lines representing a test case.
The first line of each case contains a single integer n (1≤n≤105) described above.
The second line of that contains n integers ranging in [1,109].

输出

You should output exactly T lines.
For each test case, print Case d: (d represents the order of the test case) first. Then output exactly one integer representing the answer. If it is impossible, print -1 instead.

样例输入

复制样例数据

3
1
2
5
2 5 9 5 7
5
3 5 7 9 11

样例输出

Case 1: 0
Case 2: -1
Case 3: 1

提示

Sample 1: You do not need to do anything because its gcd is already larger than 1.
Sample 2: It is impossible to obtain that array.
Sample 3: You just need to add all number by 1 so that gcd of this array is 2.

  题目大意:每次操作都给数组的所有数同时+1,问最少操作几次使得所有数的gcd大于1,或者压根不能使得所有数的gcd大于1。

  思路类似于CF的Neko does Maths CodeForces - 1152C 数论欧几里得,不过这题的k是对n个数而言,但思路是一样的。

  假设b>=a,我们知道gcd(a+k,b+k)是b-a的因子,那么要想知道所有都+k能不能有gcd>1,那就是得看两两数做差,看他们的差的gcd是不是大于1,但是两两做差O(n2)肯定不行。而我们把所有数排序,然后求相邻两个数的差的gcd,就可以了。因为,像三个数a,b,c,他们的差分别是d1,d2,如果d1和d2不互质,那么d1和d1+d2自然也不互质。得出gcd,我们就枚举gcd的因子就好了。

 #include<cstdio>
#include<algorithm>
using namespace std;
const int N=;
int a[N];
int main()
{
int t=,T,n;
scanf("%d",&T);
while(t<=T)
{
scanf("%d",&n);
for(int i=;i<n;i++)
scanf("%d",&a[i]);
sort(a,a+n);
int g=,ans;
for(int i=;i<n;i++)//并不需要去重,因为gcd(0,x)=x
g=__gcd(g,a[i]-a[i-]);
if(g==)
ans=-;
else if(g==)//都是同一个数的时候得特判
{
if(a[]==)
ans=;
else
ans=;
}
else
{
ans=(g-a[]%g)%g;
for(int i=;i*i<=g;i++)//枚举因子,找最小答案
if(g%i==)
{
ans=min(ans,(i-a[]%i)%i);
ans=min(ans,(g/i-a[]%(g/i))%(g/i));
}
}
printf("Case %d: %d\n",t++,ans);
}
return ;
}

gcd

2018CCPC桂林站G Greatest Common Divisor的更多相关文章

  1. CCPC2018 桂林 G "Greatest Common Divisor"(数学)

    UPC备战省赛组队训练赛第十七场 with zyd,mxl G: Greatest Common Divisor 题目描述 There is an array of length n, contain ...

  2. 2018CCPC桂林站JStone Game

    题目描述 Alice and Bob are always playing game! The game today is about taking out stone from the stone ...

  3. upc组队赛17 Greatest Common Divisor【gcd+最小质因数】

    Greatest Common Divisor 题目链接 题目描述 There is an array of length n, containing only positive numbers. N ...

  4. [UCSD白板题] Greatest Common Divisor

    Problem Introduction The greatest common divisor \(GCD(a, b)\) of two non-negative integers \(a\) an ...

  5. greatest common divisor

    One efficient way to compute the GCD of two numbers is to use Euclid's algorithm, which states the f ...

  6. 最大公约数和最小公倍数(Greatest Common Divisor and Least Common Multiple)

    定义: 最大公约数(英语:greatest common divisor,gcd).是数学词汇,指能够整除多个整数的最大正整数.而多个整数不能都为零.例如8和12的最大公因数为4. 最小公倍数是数论中 ...

  7. 845. Greatest Common Divisor

    描述 Given two numbers, number a and number b. Find the greatest common divisor of the given two numbe ...

  8. hdu 5207 Greatest Greatest Common Divisor 数学

    Greatest Greatest Common Divisor Time Limit: 1 Sec  Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/ ...

  9. LeetCode 1071. 字符串的最大公因子(Greatest Common Divisor of Strings) 45

    1071. 字符串的最大公因子 1071. Greatest Common Divisor of Strings 题目描述 对于字符串 S 和 T,只有在 S = T + ... + T(T 与自身连 ...

随机推荐

  1. 剑指offer42:数组和一个数字S,输出两个数的乘积最小的

    1 题目描述 输入一个递增排序的数组和一个数字S,在数组中查找两个数,使得他们的和正好是S,如果有多对数字的和等于S,输出两个数的乘积最小的. 输出描述: 对应每个测试案例,输出两个数,小的先输出. ...

  2. spark异常篇-Removing executor 5 with no recent heartbeats: 120504 ms exceeds timeout 120000 ms 可能的解决方案

    问题描述与分析 题目中的问题大致可以描述为: 由于某个 Executor 没有按时向 Driver 发送心跳,而被 Driver 判断该 Executor 已挂掉,此时 Driver 要把 该 Exe ...

  3. BurpSuite 爆破网页后台登陆

    由于 Burp Suite是由Java语言编写而成,所以你需要首先安装JAVA的运行环境,而Java自身的跨平台性,使得软件几乎可以在任何平台上使用.Burp Suite不像其他的自动化测试工具,它需 ...

  4. python入门pk小游戏

    import time import random flag = True while flag: player_win = 0 enemy_win = 0 for i in range(1, 4): ...

  5. iot平台异构对接文档

    iot平台异构对接文档 准备工作 平台提供的XAgent开发指南.pdf demo程序xagent-ptp-demo 平台上添加产品得到产品id和key 部署时需要插件的基础程序<xlink-x ...

  6. 安卓SharedPreferences类的使用

    package com.lidaochen.phonecall; import android.content.Intent; import android.content.SharedPrefere ...

  7. flutter主题颜色

    主题色 右下角的FloatingActionButton的颜色就是默认取值MaterialColor, 默认是蓝色的,如果修改成primarySwatch,就会变成这个颜色值. 一.primarySw ...

  8. 如何创建一个前端 React 组件并发布到 NPM

    首先npm文档摆在这里: https://www.npmjs.cn/ 参考组件 https://github.com/rakuten-rex/rex-dropdownhttps://www.npmjs ...

  9. Eclipse创建Maven项目时,项目中只存在src/main/resources(没有src/main/java、src/test/java)的解决方法

      例:Maven项目(chapter11),发现只存在src/main/resources,缺少了src/main/java和src/test/java 解决方法: 1.eclipse->wi ...

  10. Delphi 定义线程对象