Ref: [Feature] Preprocessing tutorial

主要是 “无量纲化” 之前的部分。

加载数据

一、大数据源

http://archive.ics.uci.edu/ml/
http://aws.amazon.com/publicdatasets/
http://www.kaggle.com/
http://www.kdnuggets.com/datasets/index.html

二、初步查看

了解需求

Swipejobs is all about matching Jobs to Workers. Your challenge is to analyse the data provided and answer the questions below.

You can access the data by opening the following S3 bucket:

/* somewhere */

Please note that Worker (worker parquet files) has one or more job tickets (jobticket parquet files) associated with it.

Using these parquet files:

求相关性
1. Is there a co-relation between jobticket.jobTicketState, jobticket.clickedCalloff and jobticket.assignedBySwipeJobs values across workers. 预测
2. Looking at Worker.profileLastUpdatedDate values, calculate an estimation for workers who will update their profile in the next two weeks. requirement

Requirement

粗看数据

head -5 <file>
less <file>

三、数据读取

python读取txt文件

没有格式,就要split出格式,还是建议之后转到df格式,操作方便些。

PATH = "/home/ubuntu/work/rajdeepd-spark-ml/spark-ml/data"
user_data = sc.textFile("%s/ml-100k/u.user" % PATH) user_fields = user_data.map(lambda line: line.split("|"))
print(user_fields)
user_fields.take(5)

PythonRDD[29] at RDD at PythonRDD.scala:53
Out[19]:
[['', '', 'M', 'technician', ''],
['', '', 'F', 'other', ''],
['', '', 'M', 'writer', ''],
['', '', 'M', 'technician', ''],
['', '', 'F', 'other', '']]

python读取parquet文件

Spark SQL还是作为首选工具,参见:[Spark] 03 - Spark SQL

Ref: 读写parquet格式文件的几种方式

本文将介绍常用parquet文件读写的几种方式

1. 用spark的hadoopFile api 读取hive中的 parquet格式。
2. 用 sparkSql 读写hive中的parquet
3. 用新旧MapReduce读写parquet格式文件。
4. 用 SparkSql 读写s3中的parquet

Ref: How to read parquet data from S3 to spark dataframe Python?

spark = SparkSession.builder
.master("local")
.appName("app name")
.config("spark.some.config.option", true).getOrCreate() df = spark.read.parquet("s3://path/to/parquet/file.parquet")

python读取csv文件

# define the schema, corresponding to a line in the csv data file.
schema = StructType([
StructField("long", FloatType(), nullable=True),
StructField("lat", FloatType(), nullable=True),
StructField("medage", FloatType(), nullable=True),
StructField("totrooms", FloatType(), nullable=True),
StructField("totbdrms", FloatType(), nullable=True),
StructField("pop", FloatType(), nullable=True),
StructField("houshlds", FloatType(), nullable=True),
StructField("medinc", FloatType(), nullable=True),
StructField("medhv", FloatType(), nullable=True)]
)

schema

# 参数中包含了column的定义
housing_df = spark.read.csv(path=HOUSING_DATA, schema=schema).cache()

# User-friendly的表格显示
housing_df.show(5)

# 包括了列的性质
housing_df.printSchema()

四、数据库到HBase

MySQL (binlog) --> Maxwell --> Kafka --> HBase --> Parquet.

抛出问题

我们的业务数据存放在mysql中,但是在大数据系统中我们需要拿hbase的数据进行业务处理,比如推荐系统。
那么怎么可以将mysql中的业务数据实时同步到hbase中,从而可以在大数据系统中进行实时流式计算。
 

对应方案

(1) MySQL到HBase

本次推荐工具maxwell,方式是:我们打开mysql的binlog模式,数据以row为单位输出,然后通过maxwell发送给kafka,再由另一个程序将kafka数据录入到hbase中。
 

(2) HBase到Parquet

Ref: How to move HBase tables to HDFS in Parquet format?

Ref: spark 读 hbase parquet 哪个快

Spark读hbase,生成task受所查询table的region个数限制,任务数有限,例如查询的40G数据,10G一个region,很可能就4~6个region,初始的task数就只有4~6个左右,RDD后续可以partition设置task数;spark读parquet按默认的bolck个数生成task个数,例如128M一个bolck,差不多就是300多个task,初始载入情况就比hbase快,而且直接载入parquet文件到spark的内存,而hbase还需要同regionserver交互把数据传到spark的内存也是需要消耗时间的。

总体来说,读parquet更快。

了解数据

—— RDD方式,以及正统的高阶方法:[Spark] 03 - Spark SQL

一、初步清理数据

前期发现缺失数据、不合格的数据。

# 可用于检查“空数据”、“不合格的数据”
def convert_year(x):
try:
return int(x[-4:])
except:
return 1900 # there is a 'bad' data point with a blank year, which we set to 1900 and will filter out later movie_fields = movie_data.map(lambda lines: lines.split("|"))
years = movie_fields.map(lambda fields: fields[2]).map(lambda x: convert_year(x)) 

二、特征内部类别数

num_genders     = user_fields.map(lambda fields: fields[2]).distinct().count()
num_occupations = user_fields.map(lambda fields: fields[3]).distinct().count()
num_zipcodes = user_fields.map(lambda fields: fields[4]).distinct().count()

也就是下图中惨素hist中的bins的原始值。

三、某个特征可视化

是否符合正态分布,可视化后甄别“异常值”。

数据如果有偏,可以通过log转换。

plt.hist 方法

简单地,使用hist直接得到柱状图;如果数据量太大,可以先抽样,再显示。

import matplotlib.pyplot as plt

ages = user_fields.map(lambda x: int(x[1])).collect()
plt.hist(ages, bins=30, color='gray', normed=True)
fig = matplotlib.pyplot.gcf()
fig.set_size_inches(8, 5)

* Pandas.plot 方法

显示特征列 “medage" 的直方图。

result_df.toPandas().plot.bar(x='medage',figsize=(14, 6))

reduceByKey 方法

import numpy as np

count_by_occupation = user_fields.map(lambda fields: (fields[3], 1)).reduceByKey(lambda x, y: x + y).collect()
# count_by_occupation2 = user_fields.map(lambda fields: fields[3]).countByValue() #######################################################
# 以下怎么用了 np 这个处理小数据的东东。
#######################################################
x_axis1 = np.array([c[0] for c in count_by_occupation]) 
y_axis1 = np.array([c[1] for c in count_by_occupation]) # sort by y_axis1
x_axis = x_axis1[np.argsort(y_axis1)]
y_axis = y_axis1[np.argsort(y_axis1)] pos = np.arange(len(x_axis))
width = 1.0 ax = plt.axes()
ax.set_xticks(pos + (width / 2))
ax.set_xticklabels(x_axis) plt.bar(pos, y_axis, width, color='lightblue')
plt.xticks(rotation=30)
fig = matplotlib.pyplot.gcf()
fig.set_size_inches(16, 5)

四、特征统计量

RDD 获取一列

rating_data   = rating_data_raw.map(lambda line: line.split("\t"))
ratings = rating_data.map(lambda fields: int(fields[2])) max_rating = ratings.reduce(lambda x, y: max(x, y))
min_rating = ratings.reduce(lambda x, y: min(x, y)) mean_rating = ratings.reduce(lambda x, y: x + y) / float(num_ratings)
median_rating = np.median(ratings.collect())

We can also use the stats function to get some similar information to the above.

ratings.stats()

Out[11]:
(count: 100000, mean: 3.52986, stdev: 1.12566797076, max: 5.0, min: 1.0) 

* Summary Statistics

(housing_df.describe().select(
"summary",
F.round("medage", 4).alias("medage"),
F.round("totrooms", 4).alias("totrooms"),
F.round("totbdrms", 4).alias("totbdrms"),
F.round("pop", 4).alias("pop"),
F.round("houshlds", 4).alias("houshlds"),
F.round("medinc", 4).alias("medinc"),
F.round("medhv", 4).alias("medhv"))
.show())
+-------+-------+---------+--------+---------+--------+-------+-----------+
|summary| medage| totrooms|totbdrms| pop|houshlds| medinc| medhv|
+-------+-------+---------+--------+---------+--------+-------+-----------+
| count|20640.0| 20640.0| 20640.0| 20640.0| 20640.0|20640.0| 20640.0|
| mean|28.6395|2635.7631| 537.898|1425.4767|499.5397| 3.8707|206855.8169|
| stddev|12.5856|2181.6153|421.2479|1132.4621|382.3298| 1.8998|115395.6159|
| min| 1.0| 2.0| 1.0| 3.0| 1.0| 0.4999| 14999.0|
| max| 52.0| 39320.0| 6445.0| 35682.0| 6082.0|15.0001| 500001.0|
+-------+-------+---------+--------+---------+--------+-------+-----------+

清洗数据

—— Spark SQL's DataFrame为主力工具,参考: [Spark] 03 - Spark SQL

一、重复数据

Ref: https://github.com/drabastomek/learningPySpark/blob/master/Chapter04/LearningPySpark_Chapter04.ipynb

df可以通过rdd转变而来。

1. 找重复的行

print('Count of rows: {0}'.format(df.count()))
print('Count of distinct rows: {0}'.format(df.distinct().count()))  # 所有列的集合
print('Count of distinct ids: {0}'.format(df.select([c for c in df.columns if c != 'id']).distinct().count()))  # 自定义某些列的集合

2. 去除 "完全相同的 row",包括 index

df = df.dropDuplicates()
df.show()

3. 去除 "相同的 row",不包括 index

df = df.dropDuplicates(subset=[c for c in df.columns if c != 'id'])
df.show()

二、缺失值

构造一个典型的 “问题数据表”。

df_miss = spark.createDataFrame([
(1, 143.5, 5.6, 28, 'M', 100000),
(2, 167.2, 5.4, 45, 'M', None),
(3, None , 5.2, None, None, None),
(4, 144.5, 5.9, 33, 'M', None),
(5, 133.2, 5.7, 54, 'F', None),
(6, 124.1, 5.2, None, 'F', None),
(7, 129.2, 5.3, 42, 'M', 76000),
], ['id', 'weight', 'height', 'age', 'gender', 'income'])

(1) 哪些行有缺失值?

df_miss.rdd.map(
lambda row: (row['id'], sum([c == None for c in row]))
).collect()
 
[(1, 0), (2, 1), (3, 4), (4, 1), (5, 1), (6, 2), (7, 0)]
 

(2) 瞧瞧细节

df_miss.where('id == 3').show()
 
+---+------+------+----+------+------+
| id|weight|height| age|gender|income|
+---+------+------+----+------+------+
| 3| null| 5.2|null| null| null|
+---+------+------+----+------+------+
 

(3) 每列的缺失率如何?

df_miss.agg(*[
(1 - (fn.count(c) / fn.count('*'))).alias(c + '_missing')
for c in df_miss.columns
]).show()
 
+----------+------------------+--------------+------------------+------------------+------------------+
|id_missing| weight_missing|height_missing| age_missing| gender_missing| income_missing|
+----------+------------------+--------------+------------------+------------------+------------------+
| 0.0|0.1428571428571429| 0.0|0.2857142857142857|0.1428571428571429|0.7142857142857143|
+----------+------------------+--------------+------------------+------------------+------------------+
 

(4) 缺失太多的特征,则“废”

df_miss_no_income = df_miss.select([c for c in df_miss.columns if c != 'income'])
df_miss_no_income.show()
 
+---+------+------+----+------+
| id|weight|height| age|gender|
+---+------+------+----+------+
| 1| 143.5| 5.6| 28| M|
| 2| 167.2| 5.4| 45| M|
| 3| null| 5.2|null| null|
| 4| 144.5| 5.9| 33| M|
| 5| 133.2| 5.7| 54| F|
| 6| 124.1| 5.2|null| F|
| 7| 129.2| 5.3| 42| M|
+---+------+------+----+------+
 

(5) 缺失太多的行,则“废”

df_miss_no_income.dropna(thresh=3).show()
 
+---+------+------+----+------+
| id|weight|height| age|gender|
+---+------+------+----+------+
| 1| 143.5| 5.6| 28| M|
| 2| 167.2| 5.4| 45| M|
| 4| 144.5| 5.9| 33| M|
| 5| 133.2| 5.7| 54| F|
| 6| 124.1| 5.2|null| F|
| 7| 129.2| 5.3| 42| M|
+---+------+------+----+------+
 

(6) 填补缺失值

means = df_miss_no_income.agg(
*[fn.mean(c).alias(c) for c in df_miss_no_income.columns if c != 'gender']
).toPandas().to_dict('records')[0] means['gender'] = 'missing' df_miss_no_income.fillna(means).show()
 
+---+------------------+------+---+-------+
| id| weight|height|age| gender|
+---+------------------+------+---+-------+
| 1| 143.5| 5.6| 28| M|
| 2| 167.2| 5.4| 45| M|
| 3|140.28333333333333| 5.2| 40|missing|
| 4| 144.5| 5.9| 33| M|
| 5| 133.2| 5.7| 54| F|
| 6| 124.1| 5.2| 40| F|
| 7| 129.2| 5.3| 42| M|
+---+------------------+------+---+-------+

或者,通过 Imputer 填补缺失值,如下。

from pyspark.ml.feature import Imputer

df = spark.createDataFrame([
(1.0, float("nan")),
(2.0, float("nan")),
(float("nan"), 3.0),
(4.0, 4.0),
(5.0, 5.0)
], ["a", "b"]) imputer = Imputer(inputCols=["a", "b"], outputCols=["out_a", "out_b"])
model = imputer.fit(df) model.transform(df).show()

三、异常值

1. 基本策略

  1. 判定为“outlier”,首先要通过统计描述可视化数据。
  2. 常识以外的数据点也可以直接祛除,比如:age = 300
df_outliers = spark.createDataFrame([
(1, 143.5, 5.3, 28),
(2, 154.2, 5.5, 45),
(3, 342.3, 5.1, 99),
(4, 144.5, 5.5, 33),
(5, 133.2, 5.4, 54),
(6, 124.1, 5.1, 21),
(7, 129.2, 5.3, 42),
], ['id', 'weight', 'height', 'age'])

2. 定义有效区间

cols = ['weight', 'height', 'age']
bounds = {} for col in cols:
quantiles = df_outliers.approxQuantile(col, [0.25, 0.75], 0.05)
IQR = quantiles[1] - quantiles[0]
bounds[col] = [quantiles[0] - 1.5 * IQR, quantiles[1] + 1.5 * IQR] bounds
{'age': [-11.0, 93.0],
'height': [4.499999999999999, 6.1000000000000005],
'weight': [91.69999999999999, 191.7]}
 

3. filter有效区间

outliers = df_outliers.select(*['id'] + [
(
(df_outliers[c] < bounds[c][0]) |
(df_outliers[c] > bounds[c][1])
).alias(c + '_o') for c in cols
])
outliers.show()
+---+--------+--------+-----+
| id|weight_o|height_o|age_o|
+---+--------+--------+-----+
| 1| false| false|false|
| 2| false| false|false|
| 3| true| false| true|
| 4| false| false|false|
| 5| false| false|false|
| 6| false| false|false|
| 7| false| false|false|
+---+--------+--------+-----+

并查看细节,如下。

df_outliers = df_outliers.join(outliers, on='id')
df_outliers.filter('weight_o').select('id', 'weight').show()
df_outliers.filter('age_o').select('id', 'age').show()
+---+------+
| id|weight|
+---+------+
| 3| 342.3|
+---+------+ +---+---+
| id|age|
+---+---+
| 3| 99|
+---+---+
 
End.

[ML] Load and preview large scale data的更多相关文章

  1. Introducing DataFrames in Apache Spark for Large Scale Data Science(中英双语)

    文章标题 Introducing DataFrames in Apache Spark for Large Scale Data Science 一个用于大规模数据科学的API——DataFrame ...

  2. 论文笔记之:Large Scale Distributed Semi-Supervised Learning Using Streaming Approximation

    Large Scale Distributed Semi-Supervised Learning Using Streaming Approximation Google  2016.10.06 官方 ...

  3. 大规模视觉识别挑战赛ILSVRC2015各团队结果和方法 Large Scale Visual Recognition Challenge 2015

    Large Scale Visual Recognition Challenge 2015 (ILSVRC2015) Legend: Yellow background = winner in thi ...

  4. Lessons learned developing a practical large scale machine learning system

    原文:http://googleresearch.blogspot.jp/2010/04/lessons-learned-developing-practical.html Lessons learn ...

  5. 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 17—Large Scale Machine Learning 大规模机器学习

    Lecture17 Large Scale Machine Learning大规模机器学习 17.1 大型数据集的学习 Learning With Large Datasets 如果有一个低方差的模型 ...

  6. [C12] 大规模机器学习(Large Scale Machine Learning)

    大规模机器学习(Large Scale Machine Learning) 大型数据集的学习(Learning With Large Datasets) 如果你回顾一下最近5年或10年的机器学习历史. ...

  7. Could not load file or assembly 'MySql.Data.CF,

    Could not load file or assembly 'MySql.Data.CF, Version=6.4.4.0, Culture=neutral, PublicKeyToken=c56 ...

  8. Could not load file or assembly 'System.Data.SQLite' or one of its dependencies

    试图加载格式不正确的程 异常类型 异常消息Could not load file or assembly 'System.Data.SQLite' or one of its dependencies ...

  9. SQLite 解决:Could not load file or assembly 'System.Data.SQLite ... 试图加载格式不正确的程序/or one of its dependencies. 找不到指定的模块。

     Could not load file or assembly 'System.Data.SQLite.dll' or one of its dependencies. 找不到指定的模块. 错误提示 ...

随机推荐

  1. Linux磁盘及文件系统管理2

    创建文件系统: 格式化:低级格式化(分区之前进行,划分磁道).高级格式化(分区之后对分区进行,创建文件系统) 元数据区,数据区 元数据区: 文件元数据:inode(index node) 大小.权限. ...

  2. golang结构体json格式化的时间格式

    golang结构体json格式化的时间格式 在我们开发中,经常会解析time.Time 往往前台传过来的时候,是个string 但是我们希望在结构体转成time.Time type Param str ...

  3. Keras---Virtualenv 下安装Keras (基于Tensorflow后端)

    Python---Virtualenv 下安装Keras  (基于Tensorflow后端)   一.Keras简介 https://keras-cn.readthedocs.io/en/latest ...

  4. Comparator分组测试

    import java.util.ArrayList; import java.util.Collection; import java.util.Collections; import java.u ...

  5. IDEA设置左侧边栏修改代码后变色

    首先声明,此功能是基于版本控制的,不管是基于git或者是svn, 都要有版本控制方可使用. 平常情况下,IDEA左边栏是没有颜色的,如下图所示 当我们修改了代码,左侧就会有颜色显示, 右侧滚动条处也有 ...

  6. jQuery获取上传文件的名称

    //获取文件名称 function getFileName(path) {     var pos1 = path.lastIndexOf('/');     var pos2 = path.last ...

  7. FFmpeg常用命令学习笔记(二)录制命令

    录制命令 1.FFmpeg录屏命令 ffmpeg -f avfoundation -i 1 -r 30 out.yuv -f:指定使用avfoundation采集数据 -i:指定从哪采集数据,它是一个 ...

  8. Java队列与栈转换中String.Valueof()使用

    1. 由 基本数据型态转换成 String String 类别中已经提供了将基本数据型态转换成 String 的 static 方法 也就是 String.valueOf() 这个参数多载的方法 有下 ...

  9. 在npm install时node-gyp出现错误

    在执行npm install的时候出现了下面的错误,安装Xcode并执行sudo xcode-select -s /Applications/Xcode.app/Contents/Developer, ...

  10. 括号序列的dp问题模型

    括号序列的dp问题模型 Codeforces314E ◦给定一个长度为n的仅包含左括号和问号的字符串,将问号变成左括号或 右括号使得该括号序列合法,求方案总数. ◦例如(())与()()都是合法的括号 ...