题意:https://zoj.pintia.cn/problem-sets/91827364500/problems/91827369874

给你n*m的棋盘,我们定义放满棋盘是:任意一行一列至少有一个棋子。

问你放满棋盘需要棋子的期望数。

思路:

我们先算出用x个棋子放满棋盘的概率,然后求Sigma就可以了

我们可以转换一下放棋子的方式,在任意一个地方放棋子,我们都可以把这个位置尽可能的移到左上角。

dp【k】【i】【j】是放了k个棋子,已经有 i 行 j 列满了的概率;

注意:放最后一个的时候不需要加放在 i,j区域里的概率(既然都放里面了,那就已经放满了)。

 #define IOS ios_base::sync_with_stdio(0); cin.tie(0);
#include <cstdio>//sprintf islower isupper
#include <cstdlib>//malloc exit strcat itoa system("cls")
#include <iostream>//pair
#include <fstream>//freopen("C:\\Users\\13606\\Desktop\\草稿.txt","r",stdin);
#include <bitset>
//#include <map>
//#include<unordered_map>
#include <vector>
#include <stack>
#include <set>
#include <string.h>//strstr substr
#include <string>
#include <time.h>//srand(((unsigned)time(NULL))); Seed n=rand()%10 - 0~9;
#include <cmath>
#include <deque>
#include <queue>//priority_queue<int, vector<int>, greater<int> > q;//less
#include <vector>//emplace_back
//#include <math.h>
//#include <windows.h>//reverse(a,a+len);// ~ ! ~ ! floor
#include <algorithm>//sort + unique : sz=unique(b+1,b+n+1)-(b+1);+nth_element(first, nth, last, compare)
using namespace std;//next_permutation(a+1,a+1+n);//prev_permutation
#define fo(a,b,c) for(register int a=b;a<=c;++a)
#define fr(a,b,c) for(register int a=b;a>=c;--a)
#define mem(a,b) memset(a,b,sizeof(a))
#define pr printf
#define sc scanf
#define ls rt<<1
#define rs rt<<1|1
typedef long long ll;
void swapp(int &a,int &b);
double fabss(double a);
int maxx(int a,int b);
int minn(int a,int b);
int Del_bit_1(int n);
int lowbit(int n);
int abss(int a);
//const long long INF=(1LL<<60);
const double E=2.718281828;
const double PI=acos(-1.0);
const int inf=(<<);
const double ESP=1e-;
const int mod=(int)1e9+;
const int N=(int)1e6+; double dp[][][]; int main()
{
// freopen("C:\\Users\\13606\\Desktop\\草稿.txt","r",stdin);
int T;
sc("%d",&T);
while(T--)
{
int n,m;
sc("%d%d",&n,&m);
dp[][][]=1.0;
for(int k=;k<=n*m;++k)
{
for(int i=;i<=n;++i)
{
for(int j=;j<=m;++j)
{
dp[i][j][k]=dp[i-][j][k-]*(n+-i)*j/(n*m+-k)
+dp[i][j-][k-]*(m+-j)*i/(n*m+-k)
+dp[i-][j-][k-]*(n+-i)*(m+-j)/(n*m+-k);
if(i<n||j<m)
dp[i][j][k]+=dp[i][j][k-]*(i*j+-k)/(n*m+-k);
}
}
}
double ans=;
for(int i=;i<=n*m;++i)
ans+=i*dp[n][m][i];
pr("%.10lf\n",ans);
}
return ;
} /**************************************************************************************/ int maxx(int a,int b)
{
return a>b?a:b;
} void swapp(int &a,int &b)
{
a^=b^=a^=b;
} int lowbit(int n)
{
return n&(-n);
} int Del_bit_1(int n)
{
return n&(n-);
} int abss(int a)
{
return a>?a:-a;
} double fabss(double a)
{
return a>?a:-a;
} int minn(int a,int b)
{
return a<b?a:b;
}

概率DP(放棋子)Domination的更多相关文章

  1. [概率dp] ZOJ 3822 Domination

    题意: 给N×M的棋盘.每天随机找一个没放过棋子的格子放一个棋子 问使得每一个每列都有棋子的天数期望 思路: dp[i][j][k] 代表放了i个棋子占了j行k列 到达目标状态的期望 然后从 dp[n ...

  2. zoj3822 Domination(概率dp)

    Domination Time Limit: 8 Seconds      Memory Limit: 131072 KB      Special Judge Edward is the headm ...

  3. ZOJ 3822 Domination (三维概率DP)

    E - Domination Time Limit:8000MS     Memory Limit:131072KB     64bit IO Format:%lld & %llu Submi ...

  4. zoj 3822 Domination 概率dp 2014牡丹江站D题

    Domination Time Limit: 8 Seconds      Memory Limit: 131072 KB      Special Judge Edward is the headm ...

  5. ZOJ 3822 Domination(概率dp)

    一个n行m列的棋盘,每天可以放一个棋子,问要使得棋盘的每行每列都至少有一个棋子 需要的放棋子天数的期望. dp[i][j][k]表示用了k天棋子共能占领棋盘的i行j列的概率. 他的放置策略是,每放一次 ...

  6. Domination(概率DP)

    Domination 题目链接:https://odzkskevi.qnssl.com/9713ae1d3ff2cc043442f25e9a86814c?v=1531624384 Edward is ...

  7. zoj3822 Domination 概率dp --- 2014 ACM-ICPC Asia Mudanjiang Regional Contest

    一个n行m列的棋盘,每次能够放一个棋子.问要使得棋盘的每行每列都至少有一个棋子 须要的放棋子次数的期望. dp[i][j][k]表示用了k个棋子共能占据棋盘的i行j列的概率. 那么对于每一颗棋子,在现 ...

  8. zoj 3822 Domination (概率dp 天数期望)

    题目链接 参考博客:http://blog.csdn.net/napoleon_acm/article/details/40020297 题意:给定n*m的空棋盘 每一次在上面选择一个空的位置放置一枚 ...

  9. bzoj3294[Cqoi2011]放棋子 dp+组合+容斥

    3294: [Cqoi2011]放棋子 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 755  Solved: 294[Submit][Status] ...

随机推荐

  1. 2019牛客暑期多校训练营(第二场)E 线段树维护dp转移矩阵

    题意 给一个\(n\times m\)的01矩阵,1代表有墙,否则没有,每一步可以从\(b[i][j]\)走到\(b[i+1][j]\),\(b[i][j-1]\),\(b[i][j+1]\),有两种 ...

  2. 《新年Flag》2019年“新年Flag” - 新目标 学习计划

    <新年Flag>2019年"新年Flag" - 新学期 新目标 学习计划 达叔终于等到你了~ 先做个自我介绍: [达叔小生:往后余生,唯独有你]小程序 -> 后端 ...

  3. Codeforces 385C Bear and Prime Numbers(素数预处理)

    Codeforces 385C Bear and Prime Numbers 其实不是多值得记录的一道题,通过快速打素数表,再做前缀和的预处理,使查询的复杂度变为O(1). 但是,我在统计数组中元素出 ...

  4. 【知识库】-数据库_MySQL之基本数据查询:子查询、分组查询、模糊查询

    简书作者:seay 文章出处: 关系数据库SQL之基本数据查询:子查询.分组查询.模糊查询 回顾:[知识库]-数据库_MySQL常用SQL语句语法大全示例 Learn [已经过测试校验] 一.简单查询 ...

  5. HBuilderX中自动转换px为upx

    uni-app 使用 upx 作为默认尺寸单位, upx 是相对于基准宽度的单位,可以根据屏幕宽度进行自适应.uni-app 规定屏幕基准宽度750upx.但如果设计稿不是750px,那换算单位可头疼 ...

  6. GUI输入数据并保存

    from tkinter import * def write_to_file(): fileContent = open("deliveries.txt","a&quo ...

  7. PHP JQurey

    JQuery是用JS编写的程序,使用起来比JS更为简单,使用前需引入一个JQurey文件,下面为JQurey语法 <script type="text/javascript" ...

  8. python pymysql 连接 mysql数据库进行操作

    1.数据库的连接操作 import pymysql conn = pymysql.connect(host=', db='oldboydb') # host表示ip地址,user表示用户名,passw ...

  9. Simple Cel Shading 钟馗

    Made with Unity Unannouced project Character Art by Chris P

  10. 配置文件中间件:config-lite

    config-lite 是一个轻量的读取配置文件的模块. config-lite 会根据环境变量(NODE_ENV)的不同从当前执行进程目录下的 config 目录加载不同的配置文件. 如果不设置 N ...