E - GCD HDU - 2588
(a,b) can be easily found by the Euclidean algorithm. Now Carp is considering a little more difficult problem:
Given integers N and M, how many integer X satisfies 1<=X<=N and (X,N)>=M.
InputThe first line of input is an integer T(T<=100) representing the number of test cases. The following T lines each contains two numbers N and M (2<=N<=1000000000, 1<=M<=N), representing a test case.OutputFor each test case,output the answer on a single line.Sample Input
3
1 1
10 2
10000 72
Sample Output
1
6
260
题意:给你一个t表示测试组数,每一组数据给你两个数n,m(范围2~1e8),求在小于等于n的数中,有多少数满足gcd(i,n)>=m;
思路:很明显是一个欧拉函数,但是它的gcd不是一是m,因此我们要把它化为m,gcd为一,乘上m,gcd不就是m了吗
因此,我们要找n所有因子,
- 当因子p大于等于m的时, n = p *n/p,这个时候只要知道n/p的欧拉值就可以了euler(n/p),表示的gcd为一,*p,gcd就是p>=m;
- 当因子p,有n/p>=m时,并且保证 n/p !=p,这个时候只要知道p的欧拉值就可以了euler(p),表示的gcd为一,*n/p,gcd就是n/p>=m;
- 两者之间是没有重复的,唯一存在可能重复的就是当n/p=p的时候,特判一下就可以了euler(p),and euler(n/p) 会有重复的部分,但他们的乘项不同,乘出的结果也就不同
#include <iostream>
#include <cstdio>
#include <string>
#include <algorithm>
#include <map>
#define Mod 1000000007
using namespace std;
typedef long long ll;
const ll N = +;
map<ll,ll> elh;
long long a,b;
ll sum [N];
ll Euler(ll n)
{
if(n==)return ;
ll res =n;
for(ll i=;i<=n/i;i++)
{
if(n%i==)
{
res = res -res/i;
}
while(n%i==)n/=i;
}
if(n>)res -= res/n;
return res;
}
int main()
{
int t;
cin >>t;
while(t--)
{
scanf("%lld%lld",&a,&b);
ll sum =;
for(int i=;i<=a/i;i++)
{
if(a%i==)
{
if(i>=b)
{
sum +=Euler(a/i);
}
if(a/i>=b&&a/i!=i)
{
sum+=Euler(i);
}
}
}
cout <<sum<<endl;
}
return ;
}
不管前方的路有多么曲折,我都会告诉自己,自己的选择,没有后悔,后退的可能,因为热爱所以坚持,既然已经走上这条路,就走出一点风采!!!
E - GCD HDU - 2588的更多相关文章
- GCD HDU - 2588
输入 N 和 M (2<=N<=1000000000, 1<=M<=N), 找出所有满足1<=X<=N 且 gcd(X,N)>=M 的 X 的数量. Inpu ...
- D - GCD HDU - 1695 -模板-莫比乌斯容斥
D - GCD HDU - 1695 思路: 都 除以 k 后转化为 1-b/k 1-d/k中找互质的对数,但是需要去重一下 (x,y) (y,x) 这种情况. 这种情况出现 x ,y ...
- HDU 2588 思维 容斥
求满足$1<=X<=N ,(X,N)>=M$的个数,其中$N, M (2<=N<=1000000000, 1<=M<=N)$. 首先,假定$(x, n)=m$ ...
- HDU 2588 GCD 【Euler + 暴力技巧】
任意门:http://acm.hdu.edu.cn/showproblem.php?pid=2588 GCD Time Limit: 2000/1000 MS (Java/Others) Mem ...
- HDU 2588 GCD (欧拉函数)
GCD Time Limit: 1000MS Memory Limit: 32768KB 64bit IO Format: %I64d & %I64u Submit Status De ...
- HDU 2588 GCD
题目大意:给定N,M, 求1<=X<=N 且gcd(X,N)>=M的个数. 题解:首先,我们求出数字N的约数,保存在约数表中,然后,对于大于等于M的约数p[i],求出Euler(n/ ...
- HDU 2588 GCD(欧拉函数)
GCD Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submis ...
- HDU 2588 GCD && GCD问题总结
GCD(一) 题目: The greatest common divisor GCD(a,b) of two positive integers a and b,sometimes written ( ...
- 题解报告:hdu 2588 GCD(欧拉函数)
Description The greatest common divisor GCD(a,b) of two positive integers a and b,sometimes written ...
随机推荐
- 联想拯救者电脑装Ubuntu没有WIFI
最近给联想电脑装Ubuntu系统,但是装完之后总是无法启动WIFI,而宽带上网却可以,给出一个解决办法,但是该办法应该只适合联想电脑,其他电脑请自测! 打开终端,输入下面指令: sudo modpro ...
- spring的控制器如何传递数据到视图
1.控制器代码 2.传递数据代码 model.addAttribute("name", name); 通过model对象传递
- 实现base标签中有绝对路径
1.首先在jsp页面中写一段神奇的JAVA代码 <% String path = request.getContextPath(); String basePath = request.getS ...
- 修改Ubuntu屏幕的分辨率
最近重新装了一下环境,用vnc连接服务器,发现分辨率过低,于是查了一下如何修改分辨率,将其调高. 编辑/etc/default/grub 搜索"#GRUB_GFXMODE=640x4 ...
- UWP笔记-自定义Grid背景图片
之前写简单的UWP版本地音乐播放器,有自定义背景壁纸的功能,现在贴在这里回顾下. Page.xaml 页面,添加Grid <Grid x:Name="mainGrid"/&g ...
- (模板)求逆矩阵luoguP4783
题目链接:https://www.luogu.org/problem/P4783 题意:求矩阵的逆. 思路:高斯消元法求矩阵的逆,n为400,卡常,我是开了O2优化才AC的.. AC代码: #incl ...
- Cacls和ICacls
解释: Cacls:显示或修改文件的访问控制列表(ACL) ICACLS:显示或修改自由访问控制表(Dacl) 上指定的文件,并指定目录中的文件应用于存储的 Dacl. 总结:显示或修改文件访问控制 ...
- 南昌网络赛J. Distance on the tree 树链剖分
Distance on the tree 题目链接 https://nanti.jisuanke.com/t/38229 Describe DSM(Data Structure Master) onc ...
- 【第一季】CH08_FPGA_Button 按钮去抖动实验
[第一季]CH08_FPGA_Button 按钮去抖动实验 按键的消抖,是指按键在闭合或松开的瞬间伴随着一连串的抖动,这样的抖动将直接影响设计系统的稳定性,降低响应灵敏度.因此,必须对抖动进行处理,即 ...
- 分布式session一致性问题
1.分布式session一致性 :指服务器集群情况下session共享的问题. 2.session的作用:保存服务器(tomcat)与客户端(浏览器)整个通讯的会话基本信息. 3.session应用场 ...