Persistent Bookcase

CodeForces - 707D

time limit per test 2 seconds

memory limit per test 512 megabytes

input

standard input

output

standard output

Recently in school Alina has learned what are the persistent data structures: they are data structures that always preserves the previous version of itself and access to it when it is modified.

After reaching home Alina decided to invent her own persistent data structure. Inventing didn't take long: there is a bookcase right behind her bed. Alina thinks that the bookcase is a good choice for a persistent data structure. Initially the bookcase is empty, thus there is no book at any position at any shelf.

The bookcase consists of n shelves, and each shelf has exactly m positions for books at it. Alina enumerates shelves by integers from 1 to n and positions at shelves — from 1 to m. Initially the bookcase is empty, thus there is no book at any position at any shelf in it.

Alina wrote down q operations, which will be consecutively applied to the bookcase. Each of the operations has one of four types:

  • 1 i j — Place a book at position j at shelf i if there is no book at it.
  • 2 i j — Remove the book from position j at shelf i if there is a book at it.
  • 3 i — Invert book placing at shelf i. This means that from every position at shelf i which has a book at it, the book should be removed, and at every position at shelf i which has not book at it, a book should be placed.
  • 4 k — Return the books in the bookcase in a state they were after applying k-th operation. In particular, k = 0 means that the bookcase should be in initial state, thus every book in the bookcase should be removed from its position.

After applying each of operation Alina is interested in the number of books in the bookcase. Alina got 'A' in the school and had no problem finding this values. Will you do so?

Input

The first line of the input contains three integers n, m and q (1 ≤ n, m ≤ 103, 1 ≤ q ≤ 105) — the bookcase dimensions and the number of operations respectively.

The next q lines describes operations in chronological order — i-th of them describes i-th operation in one of the four formats described in the statement.

It is guaranteed that shelf indices and position indices are correct, and in each of fourth-type operation the number k corresponds to some operation before it or equals to 0.

Output

For each operation, print the number of books in the bookcase after applying it in a separate line. The answers should be printed in chronological order.

Examples

input

Copy

2 3 31 1 13 24 0

output

Copy

140

input

Copy

4 2 63 22 2 23 33 22 2 23 2

output

Copy

213324

input

Copy

2 2 23 22 2 1

output

Copy

21

Note

This image illustrates the second sample case.

题意:

​ 现在有一个N*M的书架,有Q个操作,对于每个操作,输入opt:

​ 如果opt==1,那么输入x,y,如果第x行第y列无书,则放一本书。

​ 如果opt==2,那么输入x,y,如果第x行第y列有书,则取走那本书。

​ 如果opt==3,那么输入x,将第x行有书的取走,无书的位置放一本。

​ 如果opt==4,那么输入k,表示把书架的情况恢复为第k次操作后的样貌,k在当前操作之前。

思路:

注意到整体操作顺序为有根树,可以DFS回溯处理,对于书架上的书个数情况,可以直接用bitset。

#include <iostream>
#include <cstdio>
#include <cstring>
#include <bits/stdc++.h>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <vector>
#include <iomanip>
#define ALL(x) (x).begin(), (x).end()
#define sz(a) int(a.size())
#define rep(i,x,n) for(int i=x;i<n;i++)
#define repd(i,x,n) for(int i=x;i<=n;i++)
#define pii pair<int,int>
#define pll pair<long long ,long long>
#define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
#define MS0(X) memset((X), 0, sizeof((X)))
#define MSC0(X) memset((X), '\0', sizeof((X)))
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define eps 1e-6
#define gg(x) getInt(&x)
#define chu(x) cout<<"["<<#x<<" "<<(x)<<"]"<<endl
#define du3(a,b,c) scanf("%d %d %d",&(a),&(b),&(c))
#define du2(a,b) scanf("%d %d",&(a),&(b))
#define du1(a) scanf("%d",&(a));
using namespace std;
typedef long long ll;
ll gcd(ll a, ll b) {return b ? gcd(b, a % b) : a;}
ll lcm(ll a, ll b) {return a / gcd(a, b) * b;}
ll powmod(ll a, ll b, ll MOD) {a %= MOD; if (a == 0ll) {return 0ll;} ll ans = 1; while (b) {if (b & 1) {ans = ans * a % MOD;} a = a * a % MOD; b >>= 1;} return ans;}
void Pv(const vector<int> &V) {int Len = sz(V); for (int i = 0; i < Len; ++i) {printf("%d", V[i] ); if (i != Len - 1) {printf(" ");} else {printf("\n");}}}
void Pvl(const vector<ll> &V) {int Len = sz(V); for (int i = 0; i < Len; ++i) {printf("%lld", V[i] ); if (i != Len - 1) {printf(" ");} else {printf("\n");}}} inline void getInt(int *p);
const int maxn = 1010;
const int manq = 1e5 + 10;
const int inf = 0x3f3f3f3f;
/*** TEMPLATE CODE * * STARTS HERE ***/
bitset<maxn> a[maxn], p;
int n, m;
int q;
int op[manq];
int x[manq];
int y[manq];
std::vector<int> son[manq];
int ans[manq]; void dfs(int u, int now)
{
for (auto v : son[u]) {
if (op[v] == 1) {
if (a[x[v]][y[v]] == 0) {
a[x[v]][y[v]] = 1;
ans[v] = now + 1;
dfs(v, now + 1);
a[x[v]][y[v]] = 0;
} else {
ans[v] = now ;
dfs(v, now );
}
} else if (op[v] == 2) {
if (a[x[v]][y[v]] == 1) {
a[x[v]][y[v]] = 0;
ans[v] = now - 1;
dfs(v, now - 1);
a[x[v]][y[v]] = 1;
} else {
ans[v] = now ;
dfs(v, now );
}
} else if (op[v] == 3) {
ans[v] = now - a[x[v]].count();
a[x[v]] ^= p;
ans[v] += a[x[v]].count();
dfs(v, ans[v]);
a[x[v]] ^= p;
} else if (op[v] == 4) {
ans[v] = ans[x[v]];
dfs(v, ans[v]);
}
}
}
int main()
{
//freopen("D:\\code\\text\\input.txt","r",stdin);
//freopen("D:\\code\\text\\output.txt","w",stdout);
du3(n, m, q);
repd(i, 1, m) {
p.set(i);
}
repd(i, 1, q) {
du1(op[i]);
if (op[i] <= 2) {
du2(x[i], y[i]);
} else {
du1(x[i]);
}
if (op[i] <= 3) {
son[i - 1].push_back(i);
} else {
son[x[i]].push_back(i);
}
}
dfs(0, 0);
repd(i, 1, q) {
printf("%d\n", ans[i]);
}
return 0;
} inline void getInt(int *p)
{
char ch;
do {
ch = getchar();
} while (ch == ' ' || ch == '\n');
if (ch == '-') {
*p = -(getchar() - '0');
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 - ch + '0';
}
} else {
*p = ch - '0';
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 + ch - '0';
}
}
}

Persistent Bookcase CodeForces - 707D (dfs 离线处理有根树模型的问题&&Bitset)的更多相关文章

  1. D. Persistent Bookcase(Codeforces Round #368 (Div. 2))

    D. Persistent Bookcase time limit per test 2 seconds memory limit per test 512 megabytes input stand ...

  2. codeforces 707D D. Persistent Bookcase(dfs)

    题目链接: D. Persistent Bookcase time limit per test 2 seconds memory limit per test 512 megabytes input ...

  3. CodeForces #368 div2 D Persistent Bookcase DFS

    题目链接:D Persistent Bookcase 题意:有一个n*m的书架,开始是空的,现在有k种操作: 1 x y 这个位置如果没书,放书. 2 x y 这个位置如果有书,拿走. 3 x 反转这 ...

  4. Codeforces Round #368 (Div. 2) D. Persistent Bookcase 离线 暴力

    D. Persistent Bookcase 题目连接: http://www.codeforces.com/contest/707/problem/D Description Recently in ...

  5. Codeforces Round #368 (Div. 2) D. Persistent Bookcase

    Persistent Bookcase Problem Description: Recently in school Alina has learned what are the persisten ...

  6. 【Codeforces-707D】Persistent Bookcase DFS + 线段树

    D. Persistent Bookcase Recently in school Alina has learned what are the persistent data structures: ...

  7. CF707D Persistent Bookcase

    CF707D Persistent Bookcase 洛谷评测传送门 题目描述 Recently in school Alina has learned what are the persistent ...

  8. Persistent Bookcase

    Persistent Bookcase time limit per test 2 seconds memory limit per test 512 megabytes input standard ...

  9. CodeForces 877E DFS序+线段树

    CodeForces 877E DFS序+线段树 题意 就是树上有n个点,然后每个点都有一盏灯,给出初始的状态,1表示亮,0表示不亮,然后有两种操作,第一种是get x,表示你需要输出x的子树和x本身 ...

随机推荐

  1. linux下使用openssl和md5sum加密文件或者字符串

    #openssl    //在终端中输入openssl后回车. OpenSSL> md5    //输入md5后回车 123456    //接着输入123456,不要输入回车.然后按3次ctr ...

  2. Shell中特殊字符的含义

    $0 这个程式的执行名字 $n 这个程式的第n个参数值,n=1..9 $* 这个程式的所有参数,此选项参数可超过9个. $# 这个程式的参数个数 $$ 这个程式的PID(脚本运行的当前进程ID号) $ ...

  3. Android开发环境搭建(eclipse版)

    1.下载安装JDK 网址:http://www.oracle.com/technetwork/java/javase/downloads/index.html

  4. springboot datajpa 简明说明

    findById返回Optional的使用 查询 public Object lookupDevice(Integer id) { return deviceJpa.findById(id).orEl ...

  5. 洛谷 题解 UVA1626 【括号序列 Brackets sequence】

    看还没有人发记搜的题解,赶紧来水发一篇 我们定义dp[i][j]为区间i~j内最少添加几个括号才能把这个串变成正规括号序列. 考虑四种情况 i>j不存在这种子串,返回0 i==j子串长度为1无论 ...

  6. [OpenCV] 图像亮度和对比度调整

    对比度调整的原理参考这篇博客 以下是代码实现: #include <iostream> #include "opencv2/core.hpp" #include &qu ...

  7. 【洛谷】P5348 密码解锁

    [洛谷]P5348 密码解锁 很显然我们可以推导出这个式子 设\(a(m)\)为\(m\)位置的值 \[ \mu(m) = \sum_{m | d} a(d) \\ a(m) = \sum_{m|d} ...

  8. Python3 中,一行可以书写多个语句,一个语句可以分成多行书写

    Python3 中,一行可以书写多个语句 语句之间用分号隔开即可 print('I love you');print('very much!') Python3 中,一个语句可以分成多行书写 一行过长 ...

  9. 怎样获取当前网页的URL

    1. document.documentURI document.documentURI; // "https://i.cnblogs.com/EditPosts.aspx?opt=1&qu ...

  10. 基于Windows服务的聊天程序

    本文将演示怎么通过C#开发部署一个Windows服务,该服务提供各客户端的信息通讯,适用于局域网.采用TCP协议,单一服务器连接模式为一对多:多台服务器的情况下,当客户端连接数超过预设值时可自动进行负 ...