pyecharts v1 版本 学习笔记 折线图,面积图
折线图
折线图 基本demo
import pyecharts.options as opts
from pyecharts.charts import Line
c = (
Line()
.add_xaxis(["衬衫", "毛衣", "领带", "裤子", "风衣", "高跟鞋", "袜子"])
.add_yaxis('商家A', [114, 55, 27, 101, 125, 27, 105])
.add_yaxis('商家B',[57, 134, 137, 129, 145, 60, 49])
.set_global_opts(title_opts=opts.TitleOpts(title="Line-基本示例"))
)
c.render_notebook()
折线图 如果有空数据连接
import pyecharts.options as opts
from pyecharts.charts import Line
c = (
Line()
.add_xaxis(["衬衫", "毛衣", "领带", "裤子", "风衣", "高跟鞋", "袜子"])
.add_yaxis('商家A', [114, 55, 27, 101, 125, None, 105],is_connect_nones=True)
.add_yaxis('商家B',[57, 134, 137, 129, 145, 60, 49],is_connect_nones=True)
.set_global_opts(title_opts=opts.TitleOpts(title="Line连接空数据"))
)
c.render_notebook()
平滑曲线展示
import pyecharts.options as opts
from pyecharts.charts import Line
c = (
Line()
.add_xaxis(["衬衫", "毛衣", "领带", "裤子", "风衣", "高跟鞋", "袜子"])
.add_yaxis('商家A', [114, 55, 27, 101, 125, None, 105], is_smooth=True,is_connect_nones=True)
.add_yaxis('商家B',[57, 134, 137, 129, 145, 60, 49], is_smooth=True)
.set_global_opts(title_opts=opts.TitleOpts(title="Line-smooth"))
)
c.render_notebook()
面积图:
import pyecharts.options as opts
from pyecharts.charts import Line
c = (
Line()
.add_xaxis(["衬衫", "毛衣", "领带", "裤子", "风衣", "高跟鞋", "袜子"])
.add_yaxis('商家A', [114, 55, 27, 101, 125, 27, 105], areastyle_opts=opts.AreaStyleOpts(opacity=0.5))
.add_yaxis('商家B',[57, 134, 137, 129, 145, 60, 49], areastyle_opts=opts.AreaStyleOpts(opacity=0.5))
.set_global_opts(title_opts=opts.TitleOpts(title="Line-基本示例"))
)
c.render_notebook()
line 面积图 (紧贴y轴) 曲线表示
import pyecharts.options as opts
from pyecharts.charts import Line
c = (
Line()
.add_xaxis(["衬衫", "毛衣", "领带", "裤子", "风衣", "高跟鞋", "袜子"])
.add_yaxis('商家A', [114, 55, 27, 101, 125, 27, 105],is_smooth=True, areastyle_opts=opts.AreaStyleOpts(opacity=0.5))
.add_yaxis('商家B',[57, 134, 137, 129, 145, 60, 49], is_smooth=True, areastyle_opts=opts.AreaStyleOpts(opacity=0.5))
.set_global_opts(title_opts=opts.TitleOpts(title="Line-基本示例"),
xaxis_opts=opts.AxisOpts(
axistick_opts=opts.AxisTickOpts(is_align_with_label=True),
is_scale=False,
boundary_gap=False,
) )
).set_series_opts(
areastyle_opts=opts.AreaStyleOpts(opacity=0.5),
label_opts=opts.LabelOpts(is_show=False),
)
c.render_notebook()
对数轴显示 等比
import pyecharts.options as opts
from pyecharts.charts import Line
c = (
Line()
.add_xaxis(xaxis_data=["一", "二", "三", "四", "五", "六", "七", "八", "九"])
.add_yaxis(
"2 的指数",
y_axis=[1, 2, 4, 8, 16, 32, 64, 128, 256],
linestyle_opts=opts.LineStyleOpts(width=2),
)
.add_yaxis(
"3 的指数",
y_axis=[1, 3, 9, 27, 81, 247, 741, 2223, 6669],
linestyle_opts=opts.LineStyleOpts(width=2),
)
.set_global_opts(
title_opts=opts.TitleOpts(title="Line-对数轴示例"),
xaxis_opts=opts.AxisOpts(name="x"),
yaxis_opts=opts.AxisOpts(
type_="log",
name="y",
splitline_opts=opts.SplitLineOpts(is_show=True),
is_scale=True,
),
)
)
c.render_notebook()
line-markline 平均值
import pyecharts.options as opts
from pyecharts.charts import Line
c = (
Line()
.add_xaxis(["衬衫", "毛衣", "领带", "裤子", "风衣", "高跟鞋", "袜子"])
.add_yaxis(
"商家A",
[114, 55, 27, 101, 125, 27, 105],
markline_opts=opts.MarkLineOpts(data=[opts.MarkLineItem(type_="average")]),
)
.add_yaxis(
"商家B",
[57, 134, 137, 129, 145, 60, 49],
markline_opts=opts.MarkLineOpts(data=[opts.MarkLineItem(type_="average")]),
)
.set_global_opts(title_opts=opts.TitleOpts(title="Line-MarkLine"))
)
c.render_notebook()
混合使用折线图 最大值,最小值 平均值(着重标注)
import pyecharts.options as opts
from pyecharts.charts import Line
c = (
Line()
.add_xaxis(["衬衫", "毛衣", "领带", "裤子", "风衣", "高跟鞋", "袜子"])
.add_yaxis(
"商家A",
[114, 55, 27, 101, 125, 27, 105],
# markline_opts=opts.MarkLineOpts(data=[opts.MarkLineItem(type_="average")]),
markline_opts=opts.MarkLineOpts(data=[opts.MarkLineItem(type_="average")]),
markpoint_opts=opts.MarkPointOpts(data=[opts.MarkPointItem(type_="max"),opts.MarkPointItem(type_="min")]), #点出来 )
.add_yaxis(
"商家B",
[57, 134, 137, 129, 145, 60, 49],
markline_opts=opts.MarkLineOpts(data=[opts.MarkLineItem(type_="max")]),
)
.set_global_opts(title_opts=opts.TitleOpts(title="Line-MarkLine"))
)
c.render_notebook()
pyecharts v1 版本 学习笔记 折线图,面积图的更多相关文章
- pyecharts v1 版本 学习笔记 饼图,玫瑰图
饼图: 普通案例 from example.commons import Faker from pyecharts import options as opts from pyecharts.char ...
- pyecharts v1 版本 学习笔记 散点图
散点图 基本案例 from example.commons import Faker from pyecharts import options as opts from pyecharts.char ...
- pyecharts v1 版本 学习笔记 柱状图
柱状图 bar 基本演示例子 from pyecharts import options as opts from pyecharts.charts import Bar c =( Bar().add ...
- 学习笔记:APP切图那点事儿–详细介绍android和ios平台
学习笔记:APP切图那点事儿–详细介绍android和ios平台 转载自:http://www.woofeng.cn/articles/168.html 版权归原作者所有 作者:亚茹有李 原文地址 ...
- Python交互图表可视化Bokeh:4. 折线图| 面积图
折线图与面积图 ① 单线图.多线图② 面积图.堆叠面积图 1. 折线图--单线图 import numpy as np import pandas as pd import matplotlib.py ...
- Matplotlib学习---用matplotlib画面积图(area chart)
这里利用Nathan Yau所著的<鲜活的数据:数据可视化指南>一书中的数据,学习画图. 数据地址:http://book.flowingdata.com/ch05/data/us-pop ...
- 雨痕 的《Python学习笔记》--附脑图(转)
原文:http://www.pythoner.com/148.html 近日,在某微博上看到有人推荐了 雨痕 的<Python学习笔记>,从github上下载下来看了下,确实很不错. 注意 ...
- ubuntu上pyecharts V1版本环境搭建
1 背景 今天想用pyecharts画图,在新的环境下使用pip安装之后发现,导入pyecharts模块一直失败,报错如下. 图 1 导入pyecharts错误图 请注意:我这里使用的python版本 ...
- 06. Matplotlib 2 |折线图| 柱状图| 堆叠图| 面积图| 填图| 饼图| 直方图| 散点图| 极坐标| 图箱型图
1.基本图表绘制 plt.plot() 图表类别:线形图.柱状图.密度图,以横纵坐标两个维度为主同时可延展出多种其他图表样式 plt.plot(kind='line', ax=None, figsiz ...
随机推荐
- re 模块与正则表达式
目录 re 模块 re 模块的基本使用 re 模块 正则表达式与re模块的关系 1:正则表达式是一门独立的技术. 2:正则在任何语言中均可以使用. 3:python中要想使用正则表达式需要通过re模块 ...
- 十大经典排序【Java实现,手工作坊式】
终于把排序这个硬骨头,但是又很基础的知识点,自己手撕了一遍!之前,使用Python看着算法导论的书手撕过一遍,印象不是很深刻,容易忘记!好记性不如烂笔头!多自己思考解决问题 1,交换类CAS[最简单] ...
- SQL优化中的重要概念:死锁
原文:SQL优化中的重要概念:死锁 上面几篇文章讲到 事务.锁定.阻塞,最后还有一种比较极端的情况,就是死锁,这也是锁定.阻塞的一种情况. 死锁是当两个事务分别锁定了资源,而又继续请求对方已获取的资源 ...
- SQL Server系统函数:类型转换函数
原文:SQL Server系统函数:类型转换函数 1.基本的转化 SELECT CAST(2008 as varchar(4)) + ' year!' SELECT CONVERT(varchar(4 ...
- Asp.Net Core 轻松学系列-2从安装环境开始
Asp.Net Core 介绍 Asp.Net Core是微软新一代的跨平台开发框架,基于 C# 语言进行开发,该框架的推出,意味着微软从系统层面正式进击 Linux 服务器平台:从更新速度开 ...
- 【算法】php实现排序(一)
选择排序方式:先让第一位与其他位比较大小找到最小的数字,然后是第二位与除第一位的其他位比较大小找出第二位,依此类推 $arr = [2,45,12,67,33,5,23,132,46]; for ($ ...
- 03 Django之视图函数
一.Django的视图函数view 一个视图函数(类),简称视图,是一个简单的Python函数(类),它接受WEB请求并返回Web响应. 响应可以是一张网页的HTML内容,一个重定向,一个404错误, ...
- PHP函数问题
有时候,运行nginx和PHP CGI(PHP FPM)web服务的Linux服务器,突然系统负载上升,用top命令查看,很多phpcgi进程的CPU利用率接近100%后来通过跟踪发现,这种情况与PH ...
- YAPI安装和使用
.本人已验证,参考文档:https://blog.csdn.net/qq_39429962/article/details/84000460 很详细.
- 如何在SAP Kyma的控制台里扩展新的UI
方法是创建一个新的resource,类型为ClusterMicroFrontend. 使用命令行kubectl get ClusterMicroFrontend查看这些UI扩展: 最后自定义的UI出现 ...