Mokia 摩基亚
题目链接:[https://www.luogu.com.cn/problem/P4390]
快捷版题意:
维护一个\(W*W\)的矩阵,初始值均为\(S\).每次操作可以增加某格子的权值,或询问某子矩阵的总权值.修改操作数\(M<=160000\),询问数\(Q<=10000,W<=2000000.\)
思路:
第一反应二维树状数组,然而看到\(W<=2000000\)便望而却步。
想到今天在练\(cdq\)分治,于是往这个方向靠。
首先,容易想到子矩阵总权值可拆分为四个前缀子矩阵权值和。
那么,前缀子矩阵权值和权值和怎么求呢?
初始值\(S\)直接加就可以了。
考虑到一个修改操作对求和有贡献,当且仅当它在需要求的前缀子矩阵内部。
设前缀子矩阵右下角坐标为\((x,y)\),则对于对其有贡献的点P,满足\(xp<=x\)且\(yp<=y\)
发现这原来就是一个裸的三维偏序,上cdq分治即可。
注意事项:
- 树状数组查询时可能会有0,要特判一下。
- 数组要开大些,因为一个询问会被分裂长四个。
- 还有变量名不要手残打错。
code:
#include<bits/stdc++.h>
using namespace std;
const int N=2e5+50;
const int W=2e6+50;
int s,w,n;
struct node{int x,y,v,tp,id,ans;}a[N],b[N];
bool operator<(node x,node y){return x.x<y.x;}
inline int read()
{
int s=0,w=1; char ch=getchar();
for(;!isdigit(ch);ch=getchar())if(ch=='-')w=-1;
for(;isdigit(ch);ch=getchar())s=(s<<1)+(s<<3)+(ch^48);
return s*w;
}
struct tree{
int c[W];
inline int lowbit(int x){return x&(-x);}
inline void add(int x,int v)
{
if(!x) return;
for(;x<=w;x+=lowbit(x))c[x]+=v;
}
inline int query(int x)
{
if(!x) return 0;
int ans=0;
for(;x;x-=lowbit(x))ans+=c[x];
return ans;
}
}T;
void cdq(int l,int r)
{
if(l==r) return;
int mid=l+r>>1;
cdq(l,mid);cdq(mid+1,r);
sort(b+l,b+mid+1);sort(b+mid+1,b+r+1);
int i=l,j=mid+1;
for(;j<=r;++j)
{
for(;i<=mid&&b[i].x<=b[j].x;++i)
if(b[i].tp==1) T.add(b[i].y,b[i].v);
if(b[j].tp==2)
a[b[j].id].ans+=T.query(b[j].y);
}
for(int e=l;e<i;++e)
if(b[e].tp==1) T.add(b[e].y,-b[e].v);
}
int main()
{
s=read(),w=read();
while(7)
{
int opt=read();
if(opt==3) break;
if(opt==1)
a[++n].x=read(),a[n].y=read(),a[n].v=read(),a[n].tp=1,a[n].id=n;
else
{
int x11=read(),y11=read(),x22=read(),y22=read();
a[++n].x=x22,a[n].y=y22,a[n].tp=2,a[n].id=n;
a[++n].x=x11-1,a[n].y=y22,a[n].tp=2,a[n].id=n;
a[++n].x=x22,a[n].y=y11-1,a[n].tp=2,a[n].id=n;
a[++n].x=x11-1,a[n].y=y11-1,a[n].tp=2,a[n].id=n;
}
}
for(int i=1;i<=n;++i) b[i]=a[i];
cdq(1,n);
for(int i=1;i<=n;++i)
if(a[i].tp==2)
{
int bas=abs(a[i+1].x-a[i+2].x)*abs(a[i+1].y-a[i+2].y)*s;
printf("%d\n",bas+a[i].ans-a[i+1].ans-a[i+2].ans+a[i+3].ans);
++i,++i,++i;
}
return 0;
}
Mokia 摩基亚的更多相关文章
- 洛谷 P4390 [BOI2007]Mokia 摩基亚 解题报告
P4390 [BOI2007]Mokia 摩基亚 题目描述 摩尔瓦多的移动电话公司摩基亚(\(Mokia\))设计出了一种新的用户定位系统.和其他的定位系统一样,它能够迅速回答任何形如"用户 ...
- 【BZOJ1176】[BOI2007]Mokia 摩基亚
[BZOJ1176][BOI2007]Mokia 摩基亚 题面 bzoj 洛谷 题解 显然的\(CDQ\)\(/\)树套树题 然而根本不想写树套树,那就用\(CDQ\)吧... 考虑到点\((x1,y ...
- [BOI2007]Mokia 摩基亚
Description: 摩尔瓦多的移动电话公司摩基亚(Mokia)设计出了一种新的用户定位系统.和其他的定位系统一样,它能够迅速回答任何形如"用户C的位置在哪?"的问题,精确到毫 ...
- cogs1752[boi2007]mokia 摩基亚 (cdq分治)
[题目描述] 摩尔瓦多的移动电话公司摩基亚(Mokia)设计出了一种新的用户定位系统.和其他的定位系统一样,它能够迅速回答任何形如“用户C的位置在哪?”的问题,精确到毫米.但其真正高科技之处在于,它能 ...
- P4390 [BOI2007]Mokia 摩基亚 (CDQ解决三维偏序问题)
题目描述 摩尔瓦多的移动电话公司摩基亚(Mokia)设计出了一种新的用户定位系统.和其他的定位系统一样,它能够迅速回答任何形如"用户C的位置在哪?"的问题,精确到毫米.但其真正高科 ...
- [BOI2007]Mokia 摩基亚(CDQ分治)
upd:\((x1,y1)(x2,y2)\)表示以\((x1,y1)\)为左上端点 \((x2,y2)\)为右下端点的矩形 本来以为是一道二位树状数组的模板,但是看数据范围之后就放弃了,边界既然到了2 ...
- P4390 [BOI2007]Mokia 摩基亚(cdq分治)
一样是cdq的板子 照着园丁的烦恼就好了 代码 #include <cstdio> #include <cstring> #include <algorithm> ...
- 【cdq分治】【P4390】[BOI2007]Mokia 摩基亚
Description 给你一个 \(W~\times~W\) 的矩阵,每个点有权值,每次进行单点修改或者求某子矩阵内权值和,允许离线 Input 第一行是两个数字 \(0\) 和矩阵大小 \(W\) ...
- [Luogu4390][BOI2007]Mokia 摩基亚
luogu 题意 支持平面内单点加一个值以及矩阵求和. 平面大小\(W\le2*10^6\),修改操作\(\le1.6*10^5\),查询操作\(\le10^4\) sol \(CDQ\)写一发. 把 ...
- [洛谷P4390][BOI2007]Mokia 摩基亚
题目大意: 维护一个W*W的矩阵,每次操作可以增加某格子的权值,或询问某子矩阵的总权值. 题解:CDQ分治,把询问拆成四个小矩形 卡点:无 C++ Code: #include <cstdio& ...
随机推荐
- skywalking 比较有意思的地方
获取agent jar包路径的方法: findPath(); private static File findPath() throws AgentPackageNotFoundException { ...
- Hadoop 完全分布式搭建
搭建环境 https://www.cnblogs.com/YuanWeiBlogger/p/11456623.html 修改主机名------------------- 1./etc/hostname ...
- 如何利用 iTunes 把 m4a/wav 文件转成 MP3 格式
MAC技巧 | 如何利用 iTunes 把 m4a/wav 文件转成 MP3 格式 - 简书
- 偷窥篇:重要的C#语言特性——30分钟LINQ教程
本文转自:http://www.cnblogs.com/liulun/archive/2013/02/26/2909985.html 千万别被这个页面的滚动条吓到!!! 我相信你一定能在30分钟之内看 ...
- vue npm run build 失败
之前删除过 node-moudel 文件夹,然后 npm install 重新安装,一切OK.打包的时候,报错,找不到caniuse什么的.再删除node-moudel,重新cnpm install ...
- C# DataGridView 动态添加列和行
https://blog.csdn.net/alisa525/article/details/7350471 dataGridView1.ReadOnly = true ; //禁用编辑功能 ...
- 2..net core 和.net framework 版本
同一台机器上可以安装多个版本的.net core runtime.比如: 每个.net core项目都可以指定自己所用的版本,所以改变某个项目的target version不会影响到其他的.安装新的r ...
- JS权威指南读书笔记(三)
第七章 数组 1 数组的实现是经过优化的,用数字索引来访问数组元素一般来说比访问常规的对象属性要快的多. 2 数组直接量的语法允许有可选的结尾的逗号,故[ ; ; ]只有两个元素而非三个. 3 调用构 ...
- pycharm中文乱码
python2默认不支持中文,python3支持中文,所以使用python2要注意. 解决方案: 顶部声明一下是utf8编码即可, # encoding=utf8
- 版本控制系统(VCS)简介
简介 版本控制系统(VCS)是一种记录一个或若干文件内容变化,以便将来查阅特定版本修订情况的系统.使用版本控制系统通常还意味着,就算你乱来一气把整个项目中的文件改的改删的删,你也照样可以轻松恢复到原先 ...