题解 CF1080A 【Petya and Origami】

这道题其实要我们求的就是

\[\lceil 2*n/k \rceil + \lceil 5*n/k \rceil + \lceil 8*n/k \rceil
\]

然后就做完了

# include <bits/stdc++.h>

# define ll long long

int main()
{
ll n, k;
scanf("%lld%lld", &n, &k);
ll ans = ((2 * n) / k) + ((5 * n) / k) + ((8 * n) / k) + bool((2 * n) % k != 0) + bool((5 * n) % k != 0) + bool((8 * n) % k != 0);
printf("%lld\n", ans);
return 0;
}

题解 CF1080B 【Margarite and the best present】

这道题其实求的是区间内偶数和减去奇数和

用等差数列求和公式即可

注意区间长度要\(+1\)

# include <bits/stdc++.h>

# define ll long long

int main()
{
int q;
scanf("%d", &q);
while(q--)
{
ll l, r;
ll ans;
scanf("%I64d%I64d", &l, &r);
if(l == r)
{
printf("%I64d\n", ((l % 2) ? -l : l));
continue;
}
ll x, y;
ll lodd = ((l % 2 == 1) ? l : l + 1), leven = ((l % 2 == 0) ? l : l + 1), rodd = ((r % 2 == 1) ? r : r - 1), reven = ((r % 2 == 0) ? r : r - 1); x = ((reven - leven) / 2 + 1) * ((reven + leven) / 2);
y = ((rodd - lodd) / 2 + 1) * ((rodd + lodd) / 2);
//printf("%d %d %d %d\n", leven, lodd, reven, rodd);
ans = x - y;
printf("%I64d\n", ans);
}
return 0;
}

题解 CF1080C 【Masha and two friends】

这道题要注意的细节超级多,是一道分类讨论好题

其实这道题要求的就是

白色:原白色面积\(+\)矩形\((x1, y1, x2, y2)\)中的黑色面积-矩形\((x3, y3, x4, y4)\)中白色面积-矩形\((x1, y1, x2, y2)\)与矩形\((x3, y3, x4, y4)\)交集中的白色面积(注:本处的黑/白色面积指原矩形中的黑/白面积)

黑色:总面积-白色

好了做完了

(注意:左下角为黑色的矩形中白色的个数为\(\lfloor \frac{n*m}2 \rfloor\),左下角为白色的矩形中白色的个数为\(\lceil \frac{n*m}2 \rceil\))

Code:

#include <bits/stdc++.h>

#define ll long long

int main()
{
int T;
scanf("%d", &T);
while (T--)
{
ll n, m;
ll x[10], y[10];
scanf("%I64d%I64d", &n, &m);
for (int i = 1; i <= 4; i++)
scanf("%I64d%I64d", &x[i], &y[i]), std::swap(x[i], y[i]);
ll w = (n * m + 1) / 2, b = (n * m) - w;
ll c1 = (x[2] - x[1] + 1) * (y[2] - y[1] + 1) - (((x[2] - x[1] + 1) * (y[2] - y[1] + 1) + ((x[1] % 2) == (y[1] % 2))) / 2);
w += c1, b -= c1;
ll c2 = (((x[4] - x[3] + 1) * (y[4] - y[3] + 1) + ((x[3] % 2) == (y[3] % 2))) / 2);
w -= c2, b += c2;
ll c3 = 0;
if (((std::min(x[2], x[4]) >= std::max(x[1], x[3])) && ((std::min(y[2], y[4]) >= std::max(y[1], y[3])))))
c3 = ((std::min(x[2], x[4]) - std::max(x[1], x[3]) + 1) * (std::min(y[2], y[4]) - std::max(y[1], y[3]) + 1)) - ((((std::min(x[2], x[4]) - std::max(x[1], x[3]) + 1) * (std::min(y[2], y[4]) - std::max(y[1], y[3]) + 1))) + ((std::max(x[1], x[3]) % 2) == (std::max(y[1], y[3]) % 2))) / 2;
c3 = std::max(c3, 0ll);
w -= c3, b += c3;
printf("%I64d %I64d\n", w, b);
}
return 0;
}

Codeforces Round #524 (Div.2)题解的更多相关文章

  1. Codeforces Round #524 (Div. 2)(前三题题解)

    这场比赛手速场+数学场,像我这样读题都读不大懂的蒟蒻表示呵呵呵. 第四题搞了半天,大概想出来了,但来不及(中途家里网炸了)查错,于是我交了两次丢了100分.幸亏这次没有掉rating. 比赛传送门:h ...

  2. Codeforces Round #182 (Div. 1)题解【ABCD】

    Codeforces Round #182 (Div. 1)题解 A题:Yaroslav and Sequence1 题意: 给你\(2*n+1\)个元素,你每次可以进行无数种操作,每次操作必须选择其 ...

  3. Codeforces Round #608 (Div. 2) 题解

    目录 Codeforces Round #608 (Div. 2) 题解 前言 A. Suits 题意 做法 程序 B. Blocks 题意 做法 程序 C. Shawarma Tent 题意 做法 ...

  4. Codeforces Round #525 (Div. 2)题解

    Codeforces Round #525 (Div. 2)题解 题解 CF1088A [Ehab and another construction problem] 依据题意枚举即可 # inclu ...

  5. Codeforces Round #528 (Div. 2)题解

    Codeforces Round #528 (Div. 2)题解 A. Right-Left Cipher 很明显这道题按题意逆序解码即可 Code: # include <bits/stdc+ ...

  6. Codeforces Round #466 (Div. 2) 题解940A 940B 940C 940D 940E 940F

    Codeforces Round #466 (Div. 2) 题解 A.Points on the line 题目大意: 给你一个数列,定义数列的权值为最大值减去最小值,问最少删除几个数,使得数列的权 ...

  7. Codeforces Round #677 (Div. 3) 题解

    Codeforces Round #677 (Div. 3) 题解 A. Boring Apartments 题目 题解 简单签到题,直接数,小于这个数的\(+10\). 代码 #include &l ...

  8. Codeforces Round #665 (Div. 2) 题解

    Codeforces Round #665 (Div. 2) 题解 写得有点晚了,估计都官方题解看完切掉了,没人看我的了qaq. 目录 Codeforces Round #665 (Div. 2) 题 ...

  9. Codeforces Round #160 (Div. 1) 题解【ABCD】

    Codeforces Round #160 (Div. 1) A - Maxim and Discounts 题意 给你n个折扣,m个物品,每个折扣都可以使用无限次,每次你使用第i个折扣的时候,你必须 ...

随机推荐

  1. 针对Web的攻击技术

    主动攻击 SQL注入攻击 OS命令注入攻击 会话劫持 被动攻击 XSS攻击 CSRF攻击 HTTP首部注入攻击 会话固定攻击 一.主动攻击 1.SQL注入攻击(案例) 什么是SQL? SQL是用来操作 ...

  2. 第4章 JIT编译器

    4.1 JIT概览 语言根据执行的方式不同分为编译型语言和解释型语言.以C++为代表的编译型语言在执行前需要编译成机器码,不同的CPU需要不同的编译器,编译成功后在同一台机器不需再次编译.以Pytho ...

  3. Powershell学习笔记:(二)、基础知识

    从Window7以后,WIndows系统都自带了Windows PowerShell. 自带版本如下 WIndow7  2.0 WIndow8   3.0 Window8.1      4.0 Win ...

  4. 手把手教小白安装Erlang

    Erlang(['ə:læŋ])是一种通用的面向并发的编程语言,它有瑞典电信设备制造商爱立信所辖的CS-Lab开发,目的是创造一种可以应对大规模并发活动的编程语言和运行环境. Erlang官网:htt ...

  5. C# 弹出层移动

    groupPrint.MouseDown += GroupBox1_MouseDown; #region 弹出层移动        [System.Runtime.InteropServices.Dl ...

  6. python多线程爬取斗图啦数据

    python多线程爬取斗图啦网的表情数据 使用到的技术点 requests请求库 re 正则表达式 pyquery解析库,python实现的jquery threading 线程 queue 队列 ' ...

  7. pinfinder

    pinfinder https://pinfinder.net https://github.com/gwatts/pinfinder 关于 Pinfinder是一个小型免费程序,可以使用iPhone ...

  8. git的下载和安装

    Git 安装配置 在使用Git前我们需要先安装 Git.Git 目前支持 Linux/Unix.Solaris.Mac和 Windows 平台上运行. Git 各平台安装包下载地址为:http://g ...

  9. log4j托管tomcat日志

    由于项目中 Tomcat 日志越来越大,对于日志查找非常不方便,所以经过一番调查可以通过log4j来托管 Tomcat 日志的方式,实现Tomcat日志切片.这里只说明怎么是log4j托管Tomcat ...

  10. MVC-Cache-1.输出缓存(Cache:[1].输出缓存2.应用程序缓存)

    缓存前提概念: 1.使用缓存的目的就是为提供网站性能,减轻对数据库的压力,提高访问的速度. 2.如果使用缓存不当,比不使用缓存造成的影响更恶劣(缓存数据的更新不及时.缓存过多等). 3..net MV ...