LOJ2541. 「PKUWC2018」猎人杀 [概率,分治NTT]
思路
好一个神仙题qwq
首先,发现由于一个人死之后分母会变,非常麻烦,考虑用某种方法定住分母。
我们稍微改一改游戏规则:一个人被打死时只打个标记,并不移走,也就是说可以被打多次但只算一次。容易发现这并不影响最终结果。
然而光想到这个好像没什么用?
再考虑容斥:枚举哪些人在1之后被打死,其他随意。设在1后面的人的权值为\(S\),总权值为\(sum\),那么概率就是
&\sum_{i=0}^{\infty} (1-\frac{w_1+S}{sum})^i\frac{w_1}{sum}\\
=&\frac{w_1}{sum}\times \frac{sum}{S+w_1}\\
=&\frac{w_1}{w_1+S}
\end{align*}
\]
(上式表示枚举打了几枪之后打到1)
而容斥系数是\((-1)^{人数}\)。
由于\(\sum w\)很小,可以考虑背包算出\(S\)的贡献,但跑不过去。
用分治NTT优化背包即可,每个人的生成函数是\(1-x^{w_i}\),对应每多一个人容斥系数就乘\(-1\)。
代码
#include<bits/stdc++.h>
clock_t t=clock();
namespace my_std{
using namespace std;
#define pii pair<int,int>
#define fir first
#define sec second
#define MP make_pair
#define rep(i,x,y) for (int i=(x);i<=(y);i++)
#define drep(i,x,y) for (int i=(x);i>=(y);i--)
#define go(x) for (int i=head[x];i;i=edge[i].nxt)
#define templ template<typename T>
#define sz 404004
#define mod 998244353ll
typedef long long ll;
typedef double db;
mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());
templ inline T rnd(T l,T r) {return uniform_int_distribution<T>(l,r)(rng);}
templ inline bool chkmax(T &x,T y){return x<y?x=y,1:0;}
templ inline bool chkmin(T &x,T y){return x>y?x=y,1:0;}
templ inline void read(T& t)
{
t=0;char f=0,ch=getchar();double d=0.1;
while(ch>'9'||ch<'0') f|=(ch=='-'),ch=getchar();
while(ch<='9'&&ch>='0') t=t*10+ch-48,ch=getchar();
if(ch=='.'){ch=getchar();while(ch<='9'&&ch>='0') t+=d*(ch^48),d*=0.1,ch=getchar();}
t=(f?-t:t);
}
template<typename T,typename... Args>inline void read(T& t,Args&... args){read(t); read(args...);}
char __sr[1<<21],__z[20];int __C=-1,__zz=0;
inline void Ot(){fwrite(__sr,1,__C+1,stdout),__C=-1;}
inline void print(register int x)
{
if(__C>1<<20)Ot();if(x<0)__sr[++__C]='-',x=-x;
while(__z[++__zz]=x%10+48,x/=10);
while(__sr[++__C]=__z[__zz],--__zz);__sr[++__C]='\n';
}
void file()
{
#ifdef NTFOrz
freopen("a.in","r",stdin);
#endif
}
inline void chktime()
{
#ifndef ONLINE_JUDGE
cout<<(clock()-t)/1000.0<<'\n';
#endif
}
#ifdef mod
ll ksm(ll x,int y){ll ret=1;for (;y;y>>=1,x=x*x%mod) if (y&1) ret=ret*x%mod;return ret;}
ll inv(ll x){return ksm(x,mod-2);}
#else
ll ksm(ll x,int y){ll ret=1;for (;y;y>>=1,x=x*x) if (y&1) ret=ret*x;return ret;}
#endif
// inline ll mul(ll a,ll b){ll d=(ll)(a*(double)b/mod+0.5);ll ret=a*b-d*mod;if (ret<0) ret+=mod;return ret;}
}
using namespace my_std;
int r[sz],limit;
void NTT_init(int n)
{
int l=-1;
for (limit=1;limit<=n;limit<<=1) ++l;
rep(i,0,limit-1) r[i]=(r[i>>1]>>1)|((i&1)<<l);
}
void NTT(ll *a,int type)
{
rep(i,0,limit-1) if (i<r[i]) swap(a[i],a[r[i]]);
for (int mid=1;mid<limit;mid<<=1)
{
ll Wn=ksm(3,(mod-1)/mid>>1);if (type==-1) Wn=inv(Wn);
for (int len=mid<<1,j=0;j<limit;j+=len)
{
ll w=1;
for (int k=0;k<mid;k++,w=w*Wn%mod)
{
ll x=a[j+k],y=w*a[j+k+mid]%mod;
a[j+k]=(x+y)%mod;a[j+k+mid]=(x-y+mod)%mod;
}
}
}
if (type==1) return;
ll I=inv(limit);
rep(i,0,limit-1) a[i]=a[i]*I%mod;
}
int n;
int w[sz];
ll tmp[60][sz];
int st[60],top;
int len[60];
int work(int l,int r)
{
if (l==r){int k=st[top--];tmp[k][0]=1;tmp[k][w[l]]=mod-1;len[k]=w[l];return k;}
int mid=(l+r)>>1,L=work(l,mid),R=work(mid+1,r);
int k=st[top--];
NTT_init(len[L]+len[R]+2);
NTT(tmp[L],1);NTT(tmp[R],1);
rep(i,0,limit-1) tmp[L][i]=tmp[L][i]*tmp[R][i]%mod;
NTT(tmp[L],-1);
rep(i,0,len[L]+len[R]) tmp[k][i]=tmp[L][i];
len[k]=len[L]+len[R];
rep(i,0,limit-1) tmp[L][i]=tmp[R][i]=0;
st[++top]=L;st[++top]=R;
return k;
}
int main()
{
file();
read(n);
int sum=0;
rep(i,1,n) read(w[i]),sum+=w[i];
rep(i,1,50) st[++top]=i;
int k=work(2,n);
ll ans=0;
rep(i,0,sum-w[1]) (ans+=tmp[k][i]*inv(w[1]+i)%mod)%=mod;
ans=ans*w[1]%mod;
cout<<ans;
return 0;
}
LOJ2541. 「PKUWC2018」猎人杀 [概率,分治NTT]的更多相关文章
- loj2541 「PKUWC2018」猎人杀 【容斥 + 分治NTT】
题目链接 loj2541 题解 思路很妙啊, 人傻想不到啊 觉得十分难求,考虑容斥 由于\(1\)号可能不是最后一个被杀的,我们容斥一下\(1\)号之后至少有几个没被杀 我们令\(A = \sum\l ...
- [LOJ2541]「PKUWC2018」猎人杀
loj description 有\(n\)个猎人,每个猎人有一个仇恨度\(w_i\),每个猎人死后会开一枪打死一个还活着的猎人,打中每个猎人的概率与他的仇恨度成正比. 现在你开了第一枪,打死每个猎人 ...
- 「PKUWC2018」猎人杀
「PKUWC2018」猎人杀 解题思路 首先有一个很妙的结论是问题可以转化为已经死掉的猎人继续算在概率里面,每一轮一直开枪直到射死一个之前没死的猎人为止. 证明,设所有猎人的概率之和为 \(W\) , ...
- 【LOJ】#2541. 「PKUWC2018」猎人杀
题解 一道神仙的题>< 我们毙掉一个人后总的w的和会减少,怎么看怎么像指数算法 然而,我们可以容斥-- 设\(\sum_{i = 1}^{n} w_{i} = Sum\) 我们把问题转化一 ...
- loj#2541. 「PKUWC2018」猎人杀
传送门 思路太清奇了-- 考虑容斥,即枚举至少有哪几个是在\(1\)号之后被杀的.设\(A=\sum_{i=1}^nw_i\),\(S\)为那几个在\(1\)号之后被杀的人的\(w\)之和.关于杀了人 ...
- LOJ 2541 「PKUWC2018」猎人杀——思路+概率+容斥+分治
题目:https://loj.ac/problem/2541 看了题解才会……有三点很巧妙. 1.分母如果变动,就很不好.所以考虑把操作改成 “已经选过的人仍然按 \( w_i \) 的概率被选,但是 ...
- LOJ #2541「PKUWC2018」猎人杀
这样$ PKUWC$就只差一道斗地主了 假装补题补完了吧..... 这题还是挺巧妙的啊...... LOJ # 2541 题意 每个人有一个嘲讽值$a_i$,每次杀死一个人,杀死某人的概率为$ \fr ...
- 洛谷 P5644 - [PKUWC2018]猎人杀(分治+NTT)
题面传送门 很久之前(2020 年)就听说过这题了,这么经典的题怎么能只听说而亲自做一遍呢 首先注意到每次开枪打死一个猎人之后,打死其他猎人概率的分母就会发生变化,这将使我们维护起来非常棘手,因此我们 ...
- loj2541【PKUWC2018】猎人杀
题解 题目中的选择条件等价于正常选择所有猎人,而如果选到已经出局的猎人就继续选: 这两种选法是一样的因为(设$W=\sum_{i=1}^{n}w_{i}$ , $X$为已经出局的猎人的$w$之和): ...
随机推荐
- 前端require代码抽离小技巧
DEMO 文件目录结构 plugin.js // /CommonJS规范 // var exports = module.exports; exports.test = function () { c ...
- manacher 算法(最长回文串)
manacher算法: 定义数组p[i]表示以i为中心的(包含i这个字符)回文串半径长 将字符串s从前扫到后for(int i=0;i<strlen(s);++i)来计算p[i],则最大的p[i ...
- WinForm 无焦点获取键盘输入
using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.D ...
- HTTP抓包实战
HTTP:超文本传输协议 允许将HTTP文档从Web服务器传送到客户端的浏览器.HTTP请求报文分为3部分.第一部分叫做起始行(Request line).第二部分叫首部(Request Header ...
- iOS - 反射机制: objc_property_t的使用
iOS属性反射:说白了,就是将两个对象的所有属性,用动态的方式取出来,并根据属性名,自动绑值.(注意:对象的类,如果是派生类,就得靠其他方式来实现了,因为得到不该基类的属性.) 常用的反射方式,有如下 ...
- IE hack大全
IE hack大全:http://blog.csdn.net/freshlover/article/details/12132801
- Nginx的反向代理和负载均衡服务
Nginx (engine x) 是一个高性能的HTTP和反向代理服务,也是一款轻量级的Web 服务器/反向代理服务器及电子邮件(IMAP/POP3)代理服务器,并在一个BSD-like 协议下发行. ...
- 【fiddler】fiddler基础
一.浏览器设置 一般情况下,fiddler会自动修改IE浏览器的设置,捕捉到IE浏览器的搜有通讯.其他浏览器需要手动设置 如chrome 打开chrome->设置->高级->系统-& ...
- MySQL主从复制(Centos6.3&MySQL5.6)
环境: Master:Centos 6.3 192.168.1.4 Slave:Centos 6.3 192.168.1.5 MySQL: MySQL-5.6.2 ...
- Django中过滤的实现
过滤模块 安装 >: pip install django-filter 注册应用:settings/dev.py INSTALLED_APPS = [ # 列表过滤模块 'django_fil ...