Gym100947E || codeforces 559c 组合数取模
Time Limit:2000MS Memory Limit:65536KB 64bit IO Format:%I64d & %I64u
Description
Announcement
- Statements
Qwerty78 is a well known programmer (He is a member of the ICPC WF winning team in 2015, a topcoder target and one of codeforces top 10).
He wants to go to Dreamoon's house to apologize to him, after he ruined his plans in winning a Div2 contest (He participated using the handle "sorry_Dreamoon") so he came first and Dreamoon came second.
Their houses are presented on a grid of N rows and M columns. Qwerty78 house is at the cell (1, 1) and Dreamoon's house is at the cell(N, M).
If Qwerty78 is standing on a cell (r, c) he can go to the cell (r + 1, c) or to the cell (r, c + 1). Unfortunately Dreamoon expected Qwerty78 visit , so he put exactly 1 obstacle in this grid (neither in his house nor in Qwerty78's house) to challenge Qwerty78. Qwerty78 can't enter a cell which contains an obstacle.
Dreamoon sent Qwerty78 a message "In how many ways can you reach my house?". Your task is to help Qwerty78 and count the number of ways he can reach Dreamoon's house. Since the answer is too large , you are asked to calculate it modulo 109 + 7 .
Input
The first line containts a single integer T , the number of testcases.
Then T testcases are given as follows :
The first line of each testcase contains two space-separated N , M ( 2 ≤ N, M ≤ 105)
The second line of each testcase contains 2 space-separated integers OR, OC - the coordinates of the blocked cell (1 ≤ OR ≤ N) (1 ≤ OC ≤ M).
Output
Output T lines , The answer for each testcase which is the number of ways Qwerty78 can reach Dreamoon's house modulo 109 + 7.
Sample Input
- 1
2 3
1 2
- 1
Hint
Sample testcase Explanation :
The grid has the following form:
Q*.
..D
Only one valid path:
(1,1) to (2,1) to (2,2) to (2,3).
题意,给你一个矩阵,并且里面有且只有一个障碍格(x,y),求从(1,1)走到(n,m) 的方案数
思路:首先没有障碍格的方案数是C(n+m-2,m-1),有一个障碍格的方案数就是总数-经过障碍的方案数。经过障碍格的方案数应该是:走到障碍格的方法数×从障碍格走到终点的方案数, 那么就是C(n+m-2,m-1) - C(x+y-2,y-1) × C(n-x+1+m-y+1-2, m-y+1-1); 求组合数取模,可以根据C(n,m) = n! / ((n-m)! × m!) 由于涉及到除法,取余的时候要预处理出所有阶乘的逆元。可以根据快速密来求逆元,复杂度为nlog,也可以直接递推出所有的阶乘逆元,复杂度为On
`
- #include <cstdio>
- #include <cstring>
- #include <iostream>
- #include <algorithm>
- using namespace std;
- const int N = 2e5 + ;
- const int MOD = 1e9 + ;
- typedef long long ll;
- ll fac[N], afac[N];
- ll powm(ll a, ll b) {
- ll ans = ;
- a = a % MOD;
- while(b) {
- if(b & ) ans = ans * a % MOD;
- a = a * a % MOD;
- b >>= ;
- }
- return ans;
- }
- void pre() {
- fac[] = ;
- for(int i = ; i < N; ++i) fac[i] = fac[i - ] * (ll)i % MOD;
- afac[N - ] = powm(fac[N - ], MOD - );
- for(int i = N - ; i >= ; --i) afac[i - ] = afac[i] * i % MOD;
- }
- ll get(int x, int y) {
- ll ans = ;
- ans = ((fac[x] * afac[x - y]) % MOD * afac[y]) % MOD;
- return ans;
- }
- int main() {
- int _; scanf("%d", &_);
- pre();
- while(_ --) {
- ll n, m, x, y;
- scanf("%I64d%I64d%I64d%I64d", &n, &m, &x, &y);
- ll res1 = get(n + m - , m - );
- ll res2 = get(x + y - , y - );
- ll res3 = get(n + m - x - y, m - y);
- printf("%I64d\n", (res1 + MOD - res2 * res3 % MOD) % MOD);
- }
- return ;
- }
Time Limit:2000MS Memory Limit:262144KB 64bit IO Format:%I64d & %I64u
Description
Giant chess is quite common in Geraldion. We will not delve into the rules of the game, we'll just say that the game takes place on an h × w field, and it is painted in two colors, but not like in chess. Almost all cells of the field are white and only some of them are black. Currently Gerald is finishing a game of giant chess against his friend Pollard. Gerald has almost won, and the only thing he needs to win is to bring the pawn from the upper left corner of the board, where it is now standing, to the lower right corner. Gerald is so confident of victory that he became interested, in how many ways can he win?
The pawn, which Gerald has got left can go in two ways: one cell down or one cell to the right. In addition, it can not go to the black cells, otherwise the Gerald still loses. There are no other pawns or pieces left on the field, so that, according to the rules of giant chess Gerald moves his pawn until the game is over, and Pollard is just watching this process.
Input
The first line of the input contains three integers: h, w, n — the sides of the board and the number of black cells (1 ≤ h, w ≤ 105, 1 ≤ n ≤ 2000).
Next n lines contain the description of black cells. The i-th of these lines contains numbers ri, ci (1 ≤ ri ≤ h, 1 ≤ ci ≤ w) — the number of the row and column of the i-th cell.
It is guaranteed that the upper left and lower right cell are white and all cells in the description are distinct.
Output
Print a single line — the remainder of the number of ways to move Gerald's pawn from the upper left to the lower right corner modulo109 + 7.
Sample Input
- 3 4 2
2 2
2 3
- 2
- 100 100 3
15 16
16 15
99 88
- 545732279
- 题意:这题是上面的复杂版,有n个障碍格,n《= 2000
思路:我们设dp[i]表示到达第i个障碍格,而不经过(1,1)到(xi,yi)中其他障碍格的方案数,那么有dp[i] = C(xi+yi-2,yi-1) - sigma(dp[j] * C(xi-xj+yi-yj, yi-yj))
其中,xj <= xi && yj <= yi 我们把第 (n,m)也看做是第n+1格障碍格,那么dp[n+1] 就是答案
- #include <bits/stdc++.h>
- using namespace std;
- typedef long long ll;
- const int N = ;
- const int X = 1e5 + ;
- const int M = 2e5 + ;
- const int MOD = 1e9 + ;
- int h, w, n;
- ll fac[M], afac[M], bc[N], dp[N];
- ll pow_mod(ll a, ll b) {
- ll ans = ;
- a %= MOD;
- while(b) {
- if(b & ) ans = (ans * a) % MOD;
- a = (a * a) % MOD;
- b >>= ;
- }
- return ans;
- }
- void pre() {
- fac[] = ;
- for(int i = ; i < M; ++i) fac[i] = fac[i - ] * (ll)i % MOD;
- afac[M - ] = pow_mod(fac[M - ], MOD - );
- for(int i = M - ; i >= ; --i) afac[i - ] = afac[i] * (ll)i % MOD;
- }
- ll C(int n, int m) {
- if(m > n) return ;
- return ((fac[n] * afac[n - m] % MOD) * afac[m]) % MOD;
- }
- int main() {
- pre();
- cin >> h >> w >> n;
- ll x, y;
- for(int i = ; i <= n; ++i) {
- cin >> x >> y;
- bc[i] = (ll)x * X + y;
- }
- bc[++n] = (ll)h * X + w;
- sort(bc + , bc + n + );
- for(int i = ; i <= n; ++i) {
- int xi = bc[i] / X, yi = bc[i] % X;
- dp[i] = C(xi + yi - , yi - );
- for(int j = ; j < i; ++j) {
- int xj = bc[j] / X, yj = bc[j] % X;
- if(xj > xi || yj > yi) continue;
- dp[i] = (MOD + dp[i] - (dp[j] * C(xi - xj + yi - yj, yi - yj) % MOD)) % MOD;
- }
- }
- cout << dp[n] << endl;
- return ;
- }
Gym100947E || codeforces 559c 组合数取模的更多相关文章
- 2015 ICL, Finals, Div. 1 Ceizenpok’s formula(组合数取模,扩展lucas定理)
J. Ceizenpok’s formula time limit per test 2 seconds memory limit per test 256 megabytes input stand ...
- 组合数取模Lucas定理及快速幂取模
组合数取模就是求的值,根据,和的取值范围不同,采取的方法也不一样. 下面,我们来看常见的两种取值情况(m.n在64位整数型范围内) (1) , 此时较简单,在O(n2)可承受的情况下组合数的计算可以 ...
- 排列组合+组合数取模 HDU 5894
// 排列组合+组合数取模 HDU 5894 // 题意:n个座位不同,m个人去坐(人是一样的),每个人之间至少相隔k个座位问方案数 // 思路: // 定好m个人 相邻人之间k个座位 剩下就剩n-( ...
- hdu 3944 DP? 组合数取模(Lucas定理+预处理+帕斯卡公式优化)
DP? Problem Description Figure 1 shows the Yang Hui Triangle. We number the row from top to bottom 0 ...
- [BZOJ 3129] [Sdoi2013] 方程 【容斥+组合数取模+中国剩余定理】
题目链接:BZOJ - 3129 题目分析 使用隔板法的思想,如果没有任何限制条件,那么方案数就是 C(m - 1, n - 1). 如果有一个限制条件是 xi >= Ai ,那么我们就可以将 ...
- lucas定理解决大组合数取模
LL MyPow(LL a, LL b) { LL ret = ; while (b) { ) ret = ret * a % MOD; a = a * a % MOD; b >>= ; ...
- BZOJ_2142_礼物_扩展lucas+组合数取模+CRT
BZOJ_2142_礼物_扩展lucas+组合数取模 Description 一年一度的圣诞节快要来到了.每年的圣诞节小E都会收到许多礼物,当然他也会送出许多礼物.不同的人物在小E 心目中的重要性不同 ...
- 组合数取模&&Lucas定理题集
题集链接: https://cn.vjudge.net/contest/231988 解题之前请先了解组合数取模和Lucas定理 A : FZU-2020 输出组合数C(n, m) mod p (1 ...
- 大组合数取模之lucas定理模板,1<=n<=m<=1e9,1<p<=1e6,p必须为素数
typedef long long ll; /********************************** 大组合数取模之lucas定理模板,1<=n<=m<=1e9,1&l ...
随机推荐
- 将DataTable中的数据导出到Excel
public static void Export(System.Data.DataTable dt,NPOI.HSSF.UserModel.HSSFWorkbook workbook,string ...
- <<< 编程类开发工具
Java.开发工具 java运行环境JDK下载 1.6 →下载JDK1.6 1.7 →下载JDK1.7 简介:著名的跨平台开源集成开发环境(IDE).最初主要用来Java语言开发,Eclipse的本身 ...
- sphinx 配置文件全解析
sphinx的配置文件是在配置的时候最容易出错的了: 我们先要明白几个概念: source:数据源,数据是从什么地方来的. index:索引,当有数据源之后,从数据源处构建索引.索引实际上就是相当于一 ...
- no module named flask.ext.login
在用安装了flask-login后使用时发现了问题,查了许多资料尝试了许多办法: 1.以为是文件结构的问题,因为flask-login包中没有__init__.py结果编译后还是不行 2.以为是路径问 ...
- centos7 没有iptables服务 file or directory? 用secureCRT登录centos?
cenetos7 采用systemd来管理服务 centos7 没有采用传统的iptables服务, 而是采用的firewalld 服务, 以及firewall-cmd 命令; 也可以采用传统的 ip ...
- 2015.4.21 实现一般免登陆,微博QQ分享,字体自适应等
1.实现一般的登录验证和免登陆: 解决方法:node方法代码,nodeJS实现的session模块,不完整,但能用,仅供参考. 语言无所谓,session的机制都是一样的,实现不一样而已,: 2. ...
- Express知识整理
开发实例 Express开发实例(1) —— Hello,world! Express开发实例(2) —— Jade模板引擎
- [Scala] akka actor编程(一)
Akka基础 Akka笔记之Actor简介 Akka中的Actor遵循Actor模型.你可以把Actor当作是人.这些人不会亲自去和别人交谈.他们只通过邮件来交流. 1. 消息传递 2. 并发 3 ...
- 项目里面的某个.m文件无法使用
- 检查:Build Phases -> Compile Sources
- 配置SQL server远程连接(局域网)
具体步骤: 1) 2) 3) 4) 5) 6) 7) 最后为了防火墙有影响,直接把防火关了,测试连接通过在来设置防火墙.