本章将从案例开始介绍python scrapy框架,更多内容请参考:python学习指南

入门案例

学习目标

  • 创建一个Scrapy项目
  • 定义提取的结构化数据(Item)
  • 编写爬取网站的Spider并提取出结构化数据(Item)
  • 编写Item Pipelines来存储提取到的Item(即结构化数据)

一、新建项目(scrapy startproject)

  • 在开始爬取之前,必须创建一个新的Scrapy项目。进入自定义的项目目录中,运行下列命令:
scrapy startproject cnblogSpider
  • 其中,cnblogSpider为项目名称,可以看到将会创建一个cnblogSpider文件夹,目录结构大致如下:

scrapy.cfg:项目部署文件

cnblogSpider/: 该项目的python模块,之后可以在此加入代码

cnblogSpider/items.py: 项目中的item文件。

cnblogSpider/pipelines.py: 项目中的Pipelines文件。

cnblogSpider/settings.py: 项目的配置文件。

cnblogSpider/spiders/: 放置Spider代码的目录。

二、明确目标(mySpider/items.py)

我们打算抓取:"http://www.cnblogs.com/miqi1992/default.html?page=2" 网站里博客地址、标题、创建时间、文本。

  1. 打开cnblogSpider目录下的items.py

  2. item定义结构化数据字段,用来保存爬取到的数据,有点像Python中的dict,但是提供了一些额外的保护减少错误。

  3. 可以通过创建一个scrapy.item类,并且定义类型为scrapy.Field的类属性来定义一个Item(可以理解成类似于ORM的映射关系)。

  4. 接下来,创建一个CnblogspiderItem类,和模型item模型(model)。

import scrapy

class CnblogspiderItem(scrapy.Item):
# define the fields for your item here like:
url = scrapy.Field()
time = scrapy.Field()
title = scrapy.Field()
content = scrapy.Field()

三、制作爬虫(spiders/cnblogsSpider.py)

爬虫功能主要分两步:

1. 爬数据

  • 在当前目录下输入命令,将在cnblogSpider/spiders目录下创建一个名为cnblog的爬虫,并制定爬取域的范围:
scrapy genspider cnblog "cnblogs.com"
  • 打开cnblogSpider/spiders目录下的cnblog,默认增加了下列代码:
# -*- coding: utf-8 -*-
import scrapy class CnblogSpider(scrapy.Spider):
name = 'cnblog'
allowed_domains = ['cnblogs.com']
start_urls = ['http://cnblogs.com/'] def parse(self, response):
pass

其实也可以由我们自行创建cnblog.py并编写上面的代码,只不过使用命令可以免去编写固定代码的麻烦

要建立一个Spider,你必须用scrapy.Spider类创建一个子类,并确定了三个强制的属性和一个方法。

  • name = "": 这个爬虫的识别名称,必须是唯一的,在不同的爬虫必须定义不同的名字。
  • allow_domains=[]: 是搜索的域名范围,也就是爬虫的约束区域,规定爬虫只爬取这个域名下的网页,不存在的URL会被忽略。
  • start_urls=():爬取的URL元祖/列表。爬虫从这里开始爬取数据,所以,第一次下载的数据将会从这些urls开始。其他子URL将会从这些起始URL中继承性生成。
  • parse(self, response):解析的方法,每个初始URL完成下载后将被调用,调用的时候传入从每一个URL传回的Response对象来作为唯一参数,主要作用如下:
    1. 负责解析返回的网页数据(respose.body),提取结构化数据(生成item)
    2. 生成需要下一页的URL请求

将start_urls的值改为需要爬取的第一个url

start_urls=("http://www.cnblogs.com/miqi1992/default.html?page=2")

修改parse()方法

def parse(self, response):
filename = "cnblog.html"
with open(filename, 'w') as f:
f.write(response.body)

然后运行一下看看,在cnblogSpider目录下运行:

scrapy crawl cnblog

是的,就是cnblog,看上面代码,它是CnblogSpider类的name属性,也就是scrapy genspider命令的唯一爬虫名。

运行之后,如果打印的日志出现[scrapy]INFO: Spider closed(finished),代表执行完成。之后当前文件夹中就出现了一个cnblog.html文件,里面就是我们刚刚要爬取的网页的全部源代码信息。

#注意,Python2.x默认编码环境是ASCII,当和取回的数据编码格式不一致时,可能会造成乱码;
#我们可以指定保存内容的编码格式,一般情况下,我们可以在代码最上方添加:
import os
reload(sys)
sys.setdefaultencoding('utf-8')
#这三行代码是Python2.x里面解决中文编码的万能钥匙,警告这么多年的吐槽后Python3学乖了,默认编码是Unicode了

2.爬数据

  • 爬取整个网页完毕,接下来就是取过程了,首先观察页面源码:

<div class="day">
<div class="dayTitle">...</div>
<div class="postTitle">...</div>
<div class="postCon">...</div>
</div>
  • XPath表达式如下:

    • 所有文章:.//*[@class='day']
    • 文章发表时间:.//*[@class='dayTitle']/a/text()
    • 文章标题内容:.//*[@class='postTitle']/a/text()
    • 文章摘要内容:.//*[@class='postCon']/div/text()
    • 文章链接:.//*[@class='postTitle']/a/@href

是不是一目了然?直接上XPath开始提取数据吧。

  • 我们之前在cnblogSpider/items.py里定义了一个CnblogItem类。这里引入进来
from cnblogSpider.items import CnblogspiderItem
  • 然后将我们得到的数据封装到一个CnblogspiderItem对象中,可以保存每个博客的属性:

form cnblogSpider.items import CnblogspiderItem def parse(self, response):
# print(response.body)
# filename = "cnblog.html"
# with open(filename, 'w') as f:
# f.write(response.body) #存放博客的集合
items = [] for each in response.xpath(".//*[@class='day']"):
item = CnblogspiderItem()
url = each.xpath('.//*[@class="postTitle"]/a/@href').extract()[0]
title = each.xpath('.//*[@class="postTitle"]/a/text()').extract()[0]
time = each.xpath('.//*[@class="dayTitle"]/a/text()').extract()[0]
content = each.xpath('.//*[@class="postCon"]/div/text()').extract()[0] item['url'] = url
item['title'] = title
item['time'] = time
item['content'] = content items.append(item) #直接返回最后数据
return items
  • 我们暂时先不处理管道,后面会详细介绍。

保存数据

scrapy保存信息的最简单的方法主要有四种, -o 输出指定格式的文件,命令如下:

#json格式,默认为Unicode编码
scrapy crawl cnblog -o cnblog.json #json lines格式,默认为Unicode编码
scrapy crawl cnblog -o cnblog.jsonl #csv逗号表达式,可用excel打开
scrapy crawl cnblog -o cnblog.csv #xml格式
scrapy crawl cnblog -o cnblog.xml

思考

如果将代码改成下面形式,结果完全一样

请思考yield在这里的作用:

form cnblogSpider.items import CnblogspiderItem

def parse(self, response):
# print(response.body)
# filename = "cnblog.html"
# with open(filename, 'w') as f:
# f.write(response.body) #存放博客的集合
# items = [] for each in response.xpath(".//*[@class='day']"):
item = CnblogspiderItem()
url = each.xpath('.//*[@class="postTitle"]/a/@href').extract()[0]
title = each.xpath('.//*[@class="postTitle"]/a/text()').extract()[0]
time = each.xpath('.//*[@class="dayTitle"]/a/text()').extract()[0]
content = each.xpath('.//*[@class="postCon"]/div/text()').extract()[0] item['url'] = url
item['title'] = title
item['time'] = time
item['content'] = content # items.append(item)
#将获取到的数据交给pipelines
yield item #直接返回最后数据,不经过pipelines
#return items

参考:

  1. Python参考手册

Python爬虫Scrapy(二)_入门案例的更多相关文章

  1. python爬虫Scrapy(一)-我爬了boss数据

    一.概述 学习python有一段时间了,最近了解了下Python的入门爬虫框架Scrapy,参考了文章Python爬虫框架Scrapy入门.本篇文章属于初学经验记录,比较简单,适合刚学习爬虫的小伙伴. ...

  2. Python爬虫之xpath语法及案例使用

    Python爬虫之xpath语法及案例使用 ---- 钢铁侠的知识库 2022.08.15 我们在写Python爬虫时,经常需要对网页提取信息,如果用传统正则表达去写会增加很多工作量,此时需要一种对数 ...

  3. python爬虫scrapy框架——人工识别登录知乎倒立文字验证码和数字英文验证码(2)

    操作环境:python3 在上一文中python爬虫scrapy框架--人工识别知乎登录知乎倒立文字验证码和数字英文验证码(1)我们已经介绍了用Requests库来登录知乎,本文如果看不懂可以先看之前 ...

  4. python爬虫scrapy项目详解(关注、持续更新)

    python爬虫scrapy项目(一) 爬取目标:腾讯招聘网站(起始url:https://hr.tencent.com/position.php?keywords=&tid=0&st ...

  5. Python爬虫利器二之Beautiful Soup的用法

    上一节我们介绍了正则表达式,它的内容其实还是蛮多的,如果一个正则匹配稍有差池,那可能程序就处在永久的循环之中,而且有的小伙伴们也对写正则表达式的写法用得不熟练,没关系,我们还有一个更强大的工具,叫Be ...

  6. Python爬虫实战二之爬取百度贴吧帖子

    大家好,上次我们实验了爬取了糗事百科的段子,那么这次我们来尝试一下爬取百度贴吧的帖子.与上一篇不同的是,这次我们需要用到文件的相关操作. 前言 亲爱的们,教程比较旧了,百度贴吧页面可能改版,可能代码不 ...

  7. 转 Python爬虫实战二之爬取百度贴吧帖子

    静觅 » Python爬虫实战二之爬取百度贴吧帖子 大家好,上次我们实验了爬取了糗事百科的段子,那么这次我们来尝试一下爬取百度贴吧的帖子.与上一篇不同的是,这次我们需要用到文件的相关操作. 本篇目标 ...

  8. ArcGIS for Desktop入门教程_第四章_入门案例分析 - ArcGIS知乎-新一代ArcGIS问答社区

    原文:ArcGIS for Desktop入门教程_第四章_入门案例分析 - ArcGIS知乎-新一代ArcGIS问答社区 1 入门案例分析 在第一章里,我们已经对ArcGIS系列软件的体系结构有了一 ...

  9. [Python爬虫] scrapy爬虫系列 <一>.安装及入门介绍

    前面介绍了很多Selenium基于自动测试的Python爬虫程序,主要利用它的xpath语句,通过分析网页DOM树结构进行爬取内容,同时可以结合Phantomjs模拟浏览器进行鼠标或键盘操作.但是,更 ...

随机推荐

  1. SQL中锁表语句简单理解(针对于一个表)

    锁定数据库的一个表 复制代码代码如下: SELECT * FROM table WITH (HOLDLOCK) 注意: 锁定数据库的一个表的区别 复制代码代码如下: SELECT * FROM tab ...

  2. iOS开发中获取视图在屏幕上显示的位置

    在iOS开发中,我们会经常遇到一个问题,例如,点击一个按钮,弹出一个遮罩层,上面显示一个弹框,弹框显示的位置在按钮附近.如果这个按钮的位置相对于屏幕边缘的距离是固定的,那就容易了,可以直接写死位置.可 ...

  3. Git命令补全配置

    Git命令补全功能 1.下载下面的文件 https://github.com/sguo421/code/blob/master/git-completion.bash 2.放倒HOME目录下,设置为隐 ...

  4. idea for Mac 代码提示设置

    1 打开idea. 2 command+, 打开设置 ,移除Cyclic Expand Word 的快捷键   3 设置basic的快捷键为 option+/ 4,自动提示大小写敏感关闭 apply ...

  5. JavaScript学习笔记(十二)——箭头函数(Arrow Function)

    在学习廖雪峰前辈的JavaScript教程中,遇到了一些需要注意的点,因此作为学习笔记列出来,提醒自己注意! 如果大家有需要,欢迎访问前辈的博客https://www.liaoxuefeng.com/ ...

  6. 六、Hadoop学习笔记————调优之操作系统以及JVM

    内核参数overcommit_memory  它是 内存分配策略 可选值:0.1.2.0, 表示内核将检查是否有足够的可用内存供应用进程使用:如果有足够的可用内存,内存申请允许:否则,内存申请失败,并 ...

  7. A workaround to change shared memory size for Docker containers in AWS ECS

    Issue Because of not supporting to specify the following docker run parameter, containers in ECS can ...

  8. 读Kafka Consumer源码

    最近一直在关注阿里的一个开源项目:OpenMessaging OpenMessaging, which includes the establishment of industry guideline ...

  9. 【转】three.js详解之入门篇

    原文链接:https://www.cnblogs.com/shawn-xie/archive/2012/08/16/2642553.html   开场白 webGL可以让我们在canvas上实现3D效 ...

  10. 模块化编程node

    众所周知,Node.js 的出现造就了全栈工程师,因为它让 JavaScript 的舞台从浏览器扩大到了服务端 而 Node.js 的强大也得益于它庞大的模块库,所以学习 Node.js 第一步还得从 ...