伽罗瓦域(有限域)GFq^12上元素的1→2→4→12塔式扩张(2)------第二次扩张
接上文https://www.cnblogs.com/heshuchao/p/8196307.html
继续探讨塔式扩张的第二部分,即1→2→4→12中2 → 4的元素扩张表示方式与计算公式推导。
3. (4)
塔式扩张中的(4),即域GFq4。这是从二次域向四次域的第二次扩张,扩张公式如下:
Fq4[v] = Fq2[v] / ( v2 - ξ), 其中,ξ = μ
即:该次扩张的即约多项式为 x2 - μ, μ2 = α, μ = √(-2)
现在依然按照高维在前,低维在后的方式,定义两个域GFq4上的元素。
X = (a, b ,c, d)
Y = (e, f, g, h)
即:
X = a * v3 + b * v2 + c * v1 + d * v0 = a * v3 + b * v2 + c * v + d
Y = e * v3 + f * v2 + g * v1 + h * v0 = e * v3 + f * v2 + g * v + h
加法和减法依然跟域GFq2上的元素运算规则一样,直接计算对应维度上的元素在素域q下的加和减。
X + Y = (a + e, b + f, c + g, d + h)
X - Y = (a - e, b - f, c - g, d - h)
这一篇主要讨论域GFq4上的元素的乘法,以及带有即约多项式值的乘法。
乘法:
即然是从2到4点扩张,那么首先考虑到将4次域上的元素用2次域上的元素进行表示。
已知
X = (a, b ,c, d)
Y = (e, f, g, h)
为使用基域Fq上的元素进行表示的。
那么,定义四个域GFq2上的元素如下:
A = (a, b)
B = (c, d)
C = (e, f)
D = (g, h)
则可以将X和Y以域GFq2上的元素进行表示
X = (a, b ,c, d) = (A, B) = A * v + B
Y = (e, f, g, h) = (C, D) = C * v + D
则:
X * Y = (A * v + B) * (C * v + D)
= (A * C * v2 + (A * D + B * C) * v + B * D) mod ( v2 - ξ)
即约多项式为 v2 - ξ, 其中 v2 = ξ = μ, 则:
= (A * D + B * C) * v + B * D + A * C * μ
= (A * D + B * C , B * D + A * C * μ)
其中A、B、C、D均为域GFq2上的元素,所以A * D 、 B * C 和 B * D均满足域GFq2上的元素的乘法,该计算公式已在上一篇博客中做过推导。
而剩余的A * C * μ则适用于上篇文章中的带即约多项式值的乘法,此处也解释了当时留的悬念,即为什么要单独设置一个这样的乘法。
带有即约多项式值的乘法:
此处设置这样一个乘法,想必也就好解释了,必然会在下一次扩张至12次域的时候,会有这样的子式需要处理,其计算过程为:
X * Y * v = (A * v + B) * (C * v + D) * v
= (A * C * v3 + (A * D + B * C) * v2 + B * D * v) mod ( v2 - ξ)
= A * C * v * μ + (A * D + B * C) * μ + B * D * v
= (B * D + A * C * μ) * v + (A * D + B * C) * μ
= (B * D + A * C * μ , A * D * μ + B * C * μ)
同上,该计算过程转化为2次域GFq2上的元素的计算,包含一个乘法操作和三个带即约多项式的乘法操作。
至此,便是所有在SM9算法中会用到的域GFq4上的计算规则。
将该部分总结一下,两个域GFq4上的乘法,使用域GFq2上的元素表示之后,转化成了域GFq2上的乘法共4次,而一个域GFq2上的乘法需要域GFp上的乘法共4次,也就是最终需要16次基域乘法(不包含加减)。
而向12次域GFq12上扩张的时候,则会转化成更多次的基域运算,该过程被称为塔式扩张想必也是因此。
而扩张的目的也更加明显,就是将阔域上的元素使用基域上的元素进行表示,并适配基域运算法则进行计算。
下一个篇幅会探讨第三次扩张4→12,并推导12次阔域下的元素计算公式。
伽罗瓦域(有限域)GFq^12上元素的1→2→4→12塔式扩张(2)------第二次扩张的更多相关文章
- 伽罗瓦域(有限域)GFq^12上元素的1→2→4→12塔式扩张(1)------第一次扩张
伽罗瓦域是抽象代数下的域论分支中的内容,这部分想必很多人都比较熟悉,此处不再赘述. 最近,国密算法中的SM2和SM9已经成为国际标准,其中SM9算法在椭圆曲线离散对数难题的基础上,添加了若干个双线性配 ...
- 如何在Vue中,当鼠标hover上元素时,给元素加遮罩层
介绍 当鼠标hover 上元素时,给元素加一层遮罩层. 效果图 使用 import VueHoverMask from 'vue-hover-mask' export default { compon ...
- 在VS13上编译通过的代码放在12上编译-错误:l __dtoui3 referenced in function _event_debug_map_HT_GROW
在VS13上编译通过的代码放在12上编译 遇到错误:l __dtoui3 referenced in function _event_debug_map_HT_GROW 1>------ 已启动 ...
- 获取html上元素的真正坐标
使用HTML元素的style.left,style.top,style.width,style.height以及width,height属性,都不能获得元素的真正位置与大小,这些属性取出来的都是原来的 ...
- Appium+python自动化14-查看webview上元素(DevTools)
前言 app上webview的页面实际上是启用的chrome浏览器的内核加载的,如何把手机的网页加载到电脑上,电脑的chrome浏览器上有个开发模式DevTools,是可以方便调试的. 一.环境准备 ...
- Appium+python自动化14-查看webview上元素(DevTools)【转载】
前言 app上webview的页面实际上是启用的chrome浏览器的内核加载的,如何把手机的网页加载到电脑上,电脑的chrome浏览器上有个开发模式DevTools,是可以方便调试的. 一.环境准备 ...
- Appium如何查看webview上元素
现在大部分app都是混合式的native+webview,对应native上的元素通过uiautomatorviewer很容易定位到,webview上的元素就无法识别了: 那么如何定位webview上 ...
- leetcode:Minimum Path Sum(路线上元素和的最小值)【面试算法题】
题目: Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right w ...
- python 不同集合上元素的迭代 chain()
itertools.chain()可以接受一个可迭代对象列表作为输入,并返回一个迭代器,有效的屏蔽掉在多个容器中迭代细节 >>> from itertools import chai ...
随机推荐
- svn搭建文档
1.制作本地yum源 a)挂载光盘 [root@localhost ~]# mount /dev/cdrom /mnt b)删除/etc/yum.repos.d目录所有的repo文件 [root@ ...
- HttpClient(一)HttpClient抓取网页基本信息
一.HttpClient简介 HttpClient 是 Apache Jakarta Common 下的子项目,可以用来提供高效的.最新的.功能丰富的支持 HTTP 协议的客户端编程工具包, 并且它支 ...
- c++对象在lua层的生命周期与内容扩展
前言 上一篇博客记录了 tolua++ 将 c++类型,变量,函数,以及对象导出到 lua 的过程,这篇博客就接着记录一下 c++对象的内存回收以及c++对象数据和方法在lua中的扩展. 首先 tol ...
- 学校的c++程序课程设计(简单的写法 并无太多c++的特色)
好久没更新博客了,最近一直在忙,花了一天时间做出这个简陋版的课程设计, 为了储存,也为了更新,所以于今天更新我的博客. 我选的课程设计题目如下: 某某公司的设备管理系统 功能及要求描述: (1)公司主 ...
- 高效管理http连接
1.Http连接基础 Http协议承载了互联网上的主要流量,然而说到传输,还要回归到最基本的网络分层模型TCP/IP.TCP/IP是全球计算机及网络设备都在使用的一种常用的分组交互网络分层协议集.客户 ...
- vue 二进制文件的下载(解决乱码和解压报错)
问题描述:项目中使用的是vue框架进行开发,因为文件下载存在权限问题,所以并不能通过 a 链接的 href 属性直接赋值 URL进行下载, (如果你的文件没有下载权限,可以直接通过href属性赋值UR ...
- API Gateway - KONG 安装与配置
简介 Kong,是由Mashape公司开源的,基于Nginx的API gateway 特点 可扩展,支持分布式 模块化 功能:授权.日志.ip限制.限流.api 统计分析(存在商业插件Galileo等 ...
- CoordinatorLayout与滚动的处理
本博文专门解说和CoordinatorLayout相关的知识点,这也是Design Support Library中最重要与最难的部分. 概览 CoordinatorLayout实现了多种Materi ...
- kotlin web开发教程【一】从零搭建kotlin与spring boot开发环境
IDEA中文输入法的智能提示框不会跟随光标的问题 我用的开发工具是IDEA 这个版本的IDEA有一个问题: 就是中文输入法的智能提示框不会跟随光标 解决这个问题的办法很简单,只有在安装目录下把JRE文 ...
- Python笔记·第九章—— 函数 (一)
一.函数的作用 函数可以让我们代码结构更清晰,而且避免了代码的重复,冗余,使一段代码或者功能可以反复的被调用,大大提高了开发效率 二.函数的定义 def 函数名(参数1,参数2,*args,默认参数, ...