With our powers combined! xgboost and pipelearner
@drsimonj here to show you how to use xgboost (extreme gradient boosting) models in pipelearner.
Why a post on xgboost and pipelearner?
xgboost is one of the most powerful machine-learning libraries, so there’s a good reason to use it. pipelearner helps to create machine-learning pipelines that make it easy to do cross-fold validation, hyperparameter grid searching, and more. So bringing them together will make for an awesome combination!
The only problem - out of the box, xgboost doesn’t play nice with pipelearner. Let’s work out how to deal with this.
Setup
To follow this post you’ll need the following packages:
# Install (if necessary)
install.packages(c("xgboost", "tidyverse", "devtools"))
devtools::install_github("drsimonj/pipelearner")
# Attach
library(tidyverse)
library(xgboost)
library(pipelearner)
library(lazyeval)
Our example will be to try and predict whether tumours are cancerous or not using the Breast Cancer Wisconsin (Diagnostic) Data Set. Set up as follows:
data_url <- 'https://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/breast-cancer-wisconsin.data'
d <- read_csv(
data_url,
col_names = c('id', 'thinkness', 'size_uniformity',
'shape_uniformity', 'adhesion', 'epith_size',
'nuclei', 'chromatin', 'nucleoli', 'mitoses', 'cancer')) %>%
select(-id) %>% # Remove id; not useful here
filter(nuclei != '?') %>% # Remove records with missing data
mutate(cancer = cancer == 4) %>% # one-hot encode 'cancer' as 1=malignant;0=benign
mutate_all(as.numeric) # All to numeric; needed for XGBoost
d
#> # A tibble: 683 × 10
#> thinkness size_uniformity shape_uniformity adhesion epith_size nuclei
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 5 1 1 1 2 1
#> 2 5 4 4 5 7 10
#> 3 3 1 1 1 2 2
#> 4 6 8 8 1 3 4
#> 5 4 1 1 3 2 1
#> 6 8 10 10 8 7 10
#> 7 1 1 1 1 2 10
#> 8 2 1 2 1 2 1
#> 9 2 1 1 1 2 1
#> 10 4 2 1 1 2 1
#> # ... with 673 more rows, and 4 more variables: chromatin <dbl>,
#> # nucleoli <dbl>, mitoses <dbl>, cancer <dbl>
pipelearner
pipelearner makes it easy to do lots of routine machine learning tasks, many of which you can check out in this post. For this example, we’ll use pipelearner to perform a grid search of some xgboost hyperparameters.
Grid searching is easy with pipelearner. For detailed instructions, check out my previous post: tidy grid search with pipelearner. As a quick reminder, we declare a data frame, machine learning function, formula, and hyperparameters as vectors. Here’s an example that would grid search multiple values of minsplit
and maxdepth
for an rpart decision tree:
pipelearner(d, rpart::rpart, cancer ~ .,
minsplit = c(2, 4, 6, 8, 10),
maxdepth = c(2, 3, 4, 5))
The challenge for xgboost:
pipelearner expects a model function that has two arguments:
data
andformula
xgboost
Here’s an xgboost model:
# Prep data (X) and labels (y)
X <- select(d, -cancer) %>% as.matrix()
y <- d$cancer
# Fit the model
fit <- xgboost(X, y, nrounds = 5, objective = "reg:logistic")
#> [1] train-rmse:0.372184
#> [2] train-rmse:0.288560
#> [3] train-rmse:0.230171
#> [4] train-rmse:0.188965
#> [5] train-rmse:0.158858
# Examine accuracy
predicted <- as.numeric(predict(fit, X) >= .5)
mean(predicted == y)
#> [1] 0.9838946
Look like we have a model with 98.39% accuracy on the training data!
Regardless, notice that first two arguments to xgboost() are a numeric data matrix and a numeric label vector. This is not what pipelearner wants!
Wrapper function to parse data
and formula
To make xgboost compatible with pipelearner we need to write a wrapper function that accepts data
and formula
, and uses these to pass a feature matrix and label vector to xgboost
:
pl_xgboost <- function(data, formula, ...) {
data <- as.data.frame(data)
X_names <- as.character(f_rhs(formula))
y_name <- as.character(f_lhs(formula))
if (X_names == '.') {
X_names <- names(data)[names(data) != y_name]
}
X <- data.matrix(data[, X_names])
y <- data[[y_name]]
xgboost(data = X, label = y, ...)
}
Let’s try it out:
pl_fit <- pl_xgboost(d, cancer ~ ., nrounds = 5, objective = "reg:logistic")
#> [1] train-rmse:0.372184
#> [2] train-rmse:0.288560
#> [3] train-rmse:0.230171
#> [4] train-rmse:0.188965
#> [5] train-rmse:0.158858
# Examine accuracy
pl_predicted <- as.numeric(predict(pl_fit, as.matrix(select(d, -cancer))) >= .5)
mean(pl_predicted == y)
#> [1] 0.9838946
Perfect!
Bringing it all together
We can now use pipelearner
and pl_xgboost()
for easy grid searching:
pl <- pipelearner(d, pl_xgboost, cancer ~ .,
nrounds = c(5, 10, 25),
eta = c(.1, .3),
max_depth = c(4, 6))
fits <- pl %>% learn()
#> [1] train-rmse:0.453832
#> [2] train-rmse:0.412548
#> ...
fits
#> # A tibble: 12 × 9
#> models.id cv_pairs.id train_p fit target model
#> <chr> <chr> <dbl> <list> <chr> <chr>
#> 1 1 1 1 <S3: xgb.Booster> cancer pl_xgboost
#> 2 10 1 1 <S3: xgb.Booster> cancer pl_xgboost
#> 3 11 1 1 <S3: xgb.Booster> cancer pl_xgboost
#> 4 12 1 1 <S3: xgb.Booster> cancer pl_xgboost
#> 5 2 1 1 <S3: xgb.Booster> cancer pl_xgboost
#> 6 3 1 1 <S3: xgb.Booster> cancer pl_xgboost
#> 7 4 1 1 <S3: xgb.Booster> cancer pl_xgboost
#> 8 5 1 1 <S3: xgb.Booster> cancer pl_xgboost
#> 9 6 1 1 <S3: xgb.Booster> cancer pl_xgboost
#> 10 7 1 1 <S3: xgb.Booster> cancer pl_xgboost
#> 11 8 1 1 <S3: xgb.Booster> cancer pl_xgboost
#> 12 9 1 1 <S3: xgb.Booster> cancer pl_xgboost
#> # ... with 3 more variables: params <list>, train <list>, test <list>
Looks like all the models learned OK. Let’s write a custom function to extract model accuracy and examine the results:
accuracy <- function(fit, data, target_var) {
# Convert resample object to data frame
data <- as.data.frame(data)
# Get feature matrix and labels
X <- data %>%
select(-matches(target_var)) %>%
as.matrix()
y <- data[[target_var]]
# Obtain predicted class
y_hat <- as.numeric(predict(fit, X) > .5)
# Return accuracy
mean(y_hat == y)
}
results <- fits %>%
mutate(
# hyperparameters
nrounds = map_dbl(params, "nrounds"),
eta = map_dbl(params, "eta"),
max_depth = map_dbl(params, "max_depth"),
# Accuracy
accuracy_train = pmap_dbl(list(fit, train, target), accuracy),
accuracy_test = pmap_dbl(list(fit, test, target), accuracy)
) %>%
# Select columns and order rows
select(nrounds, eta, max_depth, contains("accuracy")) %>%
arrange(desc(accuracy_test), desc(accuracy_train))
results
#> # A tibble: 12 × 5
#> nrounds eta max_depth accuracy_train accuracy_test
#> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 25 0.3 6 1.0000000 0.9489051
#> 2 25 0.3 4 1.0000000 0.9489051
#> 3 10 0.3 6 0.9981685 0.9489051
#> 4 5 0.3 6 0.9945055 0.9489051
#> 5 10 0.1 6 0.9945055 0.9489051
#> 6 25 0.1 6 0.9945055 0.9489051
#> 7 5 0.1 6 0.9926740 0.9489051
#> 8 25 0.1 4 0.9890110 0.9489051
#> 9 10 0.3 4 0.9871795 0.9489051
#> 10 5 0.3 4 0.9853480 0.9489051
#> 11 10 0.1 4 0.9853480 0.9416058
#> 12 5 0.1 4 0.9835165 0.9416058
Our top model, which got 94.89% on a test set, had nrounds
= 25, eta
= 0.3, and max_depth
= 6.
Either way, the trick was the wrapper function pl_xgboost()
that let us bridge xgboost and pipelearner. Note that this same principle can be used for any other machine learning functions that don’t play nice with pipelearner.
Bonus: bootstrapped cross validation
For those of you who are comfortable, below is a bonus example of using 100 boostrapped cross validation samples to examine consistency in the accuracy. It doesn’t get much easier than using pipelearner!
results <- pipelearner(d, pl_xgboost, cancer ~ ., nrounds = 25) %>%
learn_cvpairs(n = 100) %>%
learn() %>%
mutate(
test_accuracy = pmap_dbl(list(fit, test, target), accuracy)
)
#> [1] train-rmse:0.357471
#> [2] train-rmse:0.256735
#> ...
results %>%
ggplot(aes(test_accuracy)) +
geom_histogram(bins = 30) +
scale_x_continuous(labels = scales::percent) +
theme_minimal() +
labs(x = "Accuracy", y = "Number of samples",
title = "Test accuracy distribution for\n100 bootstrapped samples")
Sign off
Thanks for reading and I hope this was useful for you.
For updates of recent blog posts, follow @drsimonj on Twitter, or email me atdrsimonjackson@gmail.com to get in touch.
If you’d like the code that produced this blog, check out the blogR GitHub repository.
转自:https://drsimonj.svbtle.com/with-our-powers-combined-xgboost-and-pipelearner
With our powers combined! xgboost and pipelearner的更多相关文章
- xgboost入门与实战(原理篇)
sklearn实战-乳腺癌细胞数据挖掘 https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campai ...
- xgboost原理及并行实现
XGBoost训练: It is not easy to train all the trees at once. Instead, we use an additive strategy: fix ...
- 搭建 windows(7)下Xgboost(0.4)环境 (python,java)以及使用介绍及参数调优
摘要: 1.所需工具 2.详细过程 3.验证 4.使用指南 5.参数调优 内容: 1.所需工具 我用到了git(内含git bash),Visual Studio 2012(10及以上就可以),xgb ...
- 在Windows10 64位 Anaconda4 Python3.5下安装XGBoost
系统环境: Windows10 64bit Anaconda4 Python3.5.1 软件安装: Git for Windows MINGW 在安装的时候要改一个选择(Architecture选择x ...
- CF Intel Code Challenge Final Round (Div. 1 + Div. 2, Combined)
1. Intel Code Challenge Final Round (Div. 1 + Div. 2, Combined) B. Batch Sort 暴力枚举,水 1.题意:n*m的数组, ...
- 【原创】xgboost 特征评分的计算原理
xgboost是基于GBDT原理进行改进的算法,效率高,并且可以进行并行化运算: 而且可以在训练的过程中给出各个特征的评分,从而表明每个特征对模型训练的重要性, 调用的源码就不准备详述,本文主要侧重的 ...
- Ubuntu: ImportError: No module named xgboost
ImportError: No module named xgboost 解决办法: git clone --recursive https://github.com/dmlc/xgboost cd ...
- windows下安装xgboost
Note that as of the most recent release the Microsoft Visual Studio instructions no longer seem to a ...
- xgboost原理及应用
1.背景 关于xgboost的原理网络上的资源很少,大多数还停留在应用层面,本文通过学习陈天奇博士的PPT 地址和xgboost导读和实战 地址,希望对xgboost原理进行深入理解. 2.xgboo ...
随机推荐
- 1102: 零起点学算法09——继续练习简单的输入和计算(a-b)
1102: 零起点学算法09--继续练习简单的输入和计算(a-b) Time Limit: 1 Sec Memory Limit: 520 MB 64bit IO Format: %lldSub ...
- jmeter JDBC 连接数据库
1.添加JDBC Connection Configuration 2.添加JDBC Request 3.添加查看结果树 4. 设置下列参数:Database URL:jdbc:mysql://hos ...
- html 初始化
// html 初始化 <!DOCTYPE html><html lang="en"><head> <meta charset=&quo ...
- 计算单词出现的次数--linq
1.直接给出代码:声明数据,也可以是txt等文件,通过File类的静态方法读取其中的文本,再转换成List<string>数组. private static List<string ...
- cookie方法封装及cookie缺点分析
p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Consolas; color: #4f5d66 } p.p2 { margin: 0.0px ...
- Windows系统操作指令汇总
CMD命令:开始->运行->键入cmd或command(在命令行里可以看到系统版本.文件系统版本) 1. appwiz.cpl:程序和功能 2. calc:启动计算器 3. certmgr ...
- Angular回到顶部按钮指令
之前的分页代码指令化在线下测试没有问题,到服务器上就不运行了,所以那个先放一放. 今天来把"回到顶部"按钮指令化.首先是页面html: <!--回弹按钮--> < ...
- mac地址学习笔记
MAC(Media Access Control或者Medium Access Control)地址, 意译为媒体访问控制,或称为物理地址.硬件地址,用来定义网络设备的位置. 在OSI模型中,第三层网 ...
- My First GitHub
第一次使用github 在https://github.com/注册账号. 登陆之后,首先创建一个仓库(+ new repository),开源(public)的仓库是免费的,私人(private)的 ...
- Linux之定时任务
定时任务Crond介绍 Crond是linux系统中用来定期执行命令/脚本或指定程序任务的一种服务或软件,一般情况下,我们安装完Centos5/6 linux操作系统之后,默认便会启动Crond任务调 ...