一同步与异步

同步执行:一个进程在执行任务时,另一个进程必须等待执行完毕,才能继续执行

异步执行:一个进程在执行任务时,另一个进程无需等待其执行完毕就可以执行,当有消息返回时,系统会提醒后者进行处理,这样会很好的提高运行效率

二守护进程

主进程创建守护进程过程:

一 :守护进程代码在主进程结束后就终止

二:守护进程无法再开启子进程,否则抛出异常AssertionError: daemonic processes are not allowed to have children

进程之间石相互独立的,主进程运行结束,守护进程随即结束

from multiprocessing import Process
import time,random class piao(Process):
def __init__(self,name):
self.name=name
super().__init__()
def run(self):
print('%s is piaoing'%self.name)
time.sleep(random.randint(1,3))
print('%s is piao end'%self.name) p=piao('一根')
p.daemon=True #一定要在p.start()前设置,设置p为守护进程,禁止p创建子进程,并且父进程代码执行结束,p即终止运行
p.start()
print('主')
from multiprocessing import Process
from threading import Thread
import time
def foo():
print(123)
time.sleep(1)
print('end123')
def bar():
print(456)
time.sleep(2)
print('end456')
p1=Process(target=foo)
p2=Process(target=bar) p1.daemon=True
p1.start()
p2.start()
print("main-------") #打印该行则主进程代码结束,则守护进程p1应该被终止,可能会有p1任务执行的打印信息123,因为主进程打印main----时,p1也执行了,但是随即被终止

容易让人误导的例子

三进程同步(加锁)

加锁可以保证多个进程修改同一块数据时,同一时间只能有一个任务可以进行修改,即串行的修改,没错,速度是慢了,但牺牲了速度却保证了数据安全。
虽然可以用文件共享数据实现进程间通信,但问题是:
1.效率低
2.需要自己加锁处理

为此mutiprocessing模块为我们提供了基于消息的IPC通信机制:队列和管道。

1 队列和管道都是将数据存放于内存中
2 队列又是基于(管道+锁)实现的,可以让我们从复杂的锁问题中解脱出来,
我们应该尽量避免使用共享数据,尽可能使用消息传递和队列,避免处理复杂的同步和锁问题,而且在进程数目增多时,往往可以获得更好的可获展性。

part1:多个进程共享同一打印终端

并发运行,效率高,但竞争同一打印终端,带来了打印错乱
from multiprocessing import Process
import os,time
def work():
print('%s is running' %os.getpid())
time.sleep(2)
print('%s is done' %os.getpid()) if __name__ == '__main__':
for i in range(3):
p=Process(target=work)
p.start()

由并发变成了串行,牺牲了运行效率,但避免了竞争

from multiprocessing import Process,Lock
import os,time
def work(lock):
lock.acquire()
print('%s is running' %os.getpid())
time.sleep(2)
print('%s is done' %os.getpid())
lock.release()
if __name__ == '__main__':
lock=Lock()
for i in range(3):
p=Process(target=work,args=(lock,))
p.start()

part2:多个进程共享同一文件

文件当数据库,模拟抢票

#文件db的内容为:{"count":1}
#注意一定要用双引号,不然json无法识别
from multiprocessing import Process,Lock
import time,json,random
def search():
dic=json.load(open('db.txt'))
print('\033[43m剩余票数%s\033[0m' %dic['count']) def get():
dic=json.load(open('db.txt'))
time.sleep(0.1) #模拟读数据的网络延迟
if dic['count'] >0:
dic['count']-=1
time.sleep(0.2) #模拟写数据的网络延迟
json.dump(dic,open('db.txt','w'))
print('\033[43m购票成功\033[0m') def task(lock):
search()
get()
if __name__ == '__main__':
lock=Lock()
for i in range(100): #模拟并发100个客户端抢票
p=Process(target=task,args=(lock,))
p.start() 并发运行,效率高,但竞争写同一文件,数据写入错乱

模拟抢票

#文件db的内容为:{"count":1}
#注意一定要用双引号,不然json无法识别
from multiprocessing import Process,Lock
import time,json,random
def search():
dic=json.load(open('db.txt'))
print('\033[43m剩余票数%s\033[0m' %dic['count']) def get():
dic=json.load(open('db.txt'))
time.sleep(0.1) #模拟读数据的网络延迟
if dic['count'] >0:
dic['count']-=1
time.sleep(0.2) #模拟写数据的网络延迟
json.dump(dic,open('db.txt','w'))
print('\033[43m购票成功\033[0m') def task(lock):
search()
lock.acquire()
get()
lock.release()
if __name__ == '__main__':
lock=Lock()
for i in range(100): #模拟并发100个客户端抢票
p=Process(target=task,args=(lock,))
p.start()

加锁:购票行为由并发变成了串行,牺牲了运行效率,但保证了数据安全

四队列

进程彼此之间互相隔离,要实现进程间通信(IPC),multiprocessing模块支持两种形式:队列和管道,这两种方式都是使用消息传递的

 创建队列的类(底层就是以管道和锁定的方式实现)

1 Queue([maxsize]):创建共享的进程队列,Queue是多进程安全的队列,可以使用Queue实现多进程之间的数据传递。 

 参数介绍:

1 maxsize是队列中允许最大项数,省略则无大小限制。    

  方法介绍:

    主要方法:
q.put方法用以插入数据到队列中,put方法还有两个可选参数:blocked和timeout。如果blocked为True(默认值),并且timeout为正值,该方法会阻塞timeout指定的时间,直到该队列有剩余的空间。如果超时,会抛出Queue.Full异常。如果blocked为False,但该Queue已满,会立即抛出Queue.Full异常。
q.get方法可以从队列读取并且删除一个元素。同样,get方法有两个可选参数:blocked和timeout。如果blocked为True(默认值),并且timeout为正值,那么在等待时间内没有取到任何元素,会抛出Queue.Empty异常。如果blocked为False,有两种情况存在,如果Queue有一个值可用,则立即返回该值,否则,如果队列为空,则立即抛出Queue.Empty异常.
q.get_nowait():同q.get(False)
q.put_nowait():同q.put(False)
q.empty():调用此方法时q为空则返回True,该结果不可靠,比如在返回True的过程中,如果队列中又加入了项目。
q.full():调用此方法时q已满则返回True,该结果不可靠,比如在返回True的过程中,如果队列中的项目被取走。
q.qsize():返回队列中目前项目的正确数量,结果也不可靠,理由同q.empty()和q.full()一样
    其他方法(了解):
q.cancel_join_thread():不会在进程退出时自动连接后台线程。可以防止join_thread()方法阻塞
q.close():关闭队列,防止队列中加入更多数据。调用此方法,后台线程将继续写入那些已经入队列但尚未写入的数据,但将在此方法完成时马上关闭。如果q被垃圾收集,将调用此方法。关闭队列不会在队列使用者中产生任何类型的数据结束信号或异常。例如,如果某个使用者正在被阻塞在get()操作上,关闭生产者中的队列不会导致get()方法返回错误。
q.join_thread():连接队列的后台线程。此方法用于在调用q.close()方法之后,等待所有队列项被消耗。默认情况下,此方法由不是q的原始创建者的所有进程调用。调用q.cancel_join_thread方法可以禁止这种行为

  应用                      

'''
multiprocessing模块支持进程间通信的两种主要形式:管道和队列
都是基于消息传递实现的,但是队列接口
''' from multiprocessing import Process,Queue
import time
q=Queue(3) #put ,get ,put_nowait,get_nowait,full,empty
q.put(3)
q.put(3)
q.put(3)
print(q.full()) #满了 print(q.get())
print(q.get())
print(q.get())
print(q.empty()) #空了

    生产者消费者模型

在并发编程中使用生产者和消费者模式能够解决绝大多数并发问题。该模式通过平衡生产线程和消费线程的工作能力来提高程序的整体处理数据的速度。

基于队列实现生产者消费者模型

from multiprocessing import Process,Queue
import time,random,os
def consumer(q):
while True:
res=q.get()
time.sleep(random.randint(1,3))
print('%s 吃 ' %(os.getpid(),res)) def producer(q):
for i in range(10):
time.sleep(random.randint(1,3))
res='包子%s' %i
q.put(res)
print('%s 生产了 ' %(os.getpid(),res)) if __name__ == '__main__':
q=Queue()
#生产者们:即厨师们
p1=Process(target=producer,args=(q,)) #消费者们:即吃货们
c1=Process(target=consumer,args=(q,)) #开始
p1.start()
c1.start()
print('主')
from multiprocessing import Process,Queue
import time,random,os
def consumer(q):
while True:
res=q.get()
if res is None:break #收到结束信号则结束
time.sleep(random.randint(1,3))
print('\033[45m%s 吃 %s\033[0m' %(os.getpid(),res)) def producer(q):
for i in range(10):
time.sleep(random.randint(1,3))
res='包子%s' %i
q.put(res)
print('\033[44m%s 生产了 %s\033[0m' %(os.getpid(),res))
q.put(None) #发送结束信号
if __name__ == '__main__':
q=Queue()
#生产者们:即厨师们
p1=Process(target=producer,args=(q,)) #消费者们:即吃货们
c1=Process(target=consumer,args=(q,)) #开始
p1.start()
c1.start()
print('主') 生产者在生产完毕后发送结束信号None

生产者在生产完毕后发送结束信号None

from multiprocessing import Process,Queue
import time,random,os
def consumer(q):
while True:
res=q.get()
if res is None:break #收到结束信号则结束
time.sleep(random.randint(1,3))
print('\033[45m%s 吃 %s\033[0m' %(os.getpid(),res)) def producer(q):
for i in range(2):
time.sleep(random.randint(1,3))
res='包子%s' %i
q.put(res)
print('\033[44m%s 生产了 %s\033[0m' %(os.getpid(),res)) if __name__ == '__main__':
q=Queue()
#生产者们:即厨师们
p1=Process(target=producer,args=(q,)) #消费者们:即吃货们
c1=Process(target=consumer,args=(q,)) #开始
p1.start()
c1.start() p1.join()
q.put(None) #发送结束信号
print('主') 主进程在生产者生产完毕后发送结束信号None

主进程在生产者生产完毕后发送结束信号None

但上述解决方式,在有多个生产者和多个消费者时,我们则需要用一个很low的方式去解决

from multiprocessing import Process,Queue
import time,random,os
def consumer(q):
while True:
res=q.get()
if res is None:break #收到结束信号则结束
time.sleep(random.randint(1,3))
print('\033[45m%s 吃 %s\033[0m' %(os.getpid(),res)) def producer(name,q):
for i in range(2):
time.sleep(random.randint(1,3))
res='%s%s' %(name,i)
q.put(res)
print('\033[44m%s 生产了 %s\033[0m' %(os.getpid(),res)) if __name__ == '__main__':
q=Queue()
#生产者们:即厨师们
p1=Process(target=producer,args=('包子',q))
p2=Process(target=producer,args=('骨头',q))
p3=Process(target=producer,args=('泔水',q)) #消费者们:即吃货们
c1=Process(target=consumer,args=(q,))
c2=Process(target=consumer,args=(q,)) #开始
p1.start()
p2.start()
p3.start()
c1.start() p1.join() #必须保证生产者全部生产完毕,才应该发送结束信号
p2.join()
p3.join()
q.put(None) #有几个生产者就应该发送几次结束信号None
q.put(None) #发送结束信号
q.put(None) #发送结束信号
print('主')

有几个生产者就需要发送几次结束信号:相当low

我们的思路无非是发送结束信号而已,有另外一种队列提供了这种机制

   #JoinableQueue([maxsize]):这就像是一个Queue对象,但队列允许项目的使用者通知生成者项目已经被成功处理。通知进程是使用共享的信号和条件变量来实现的。

   #参数介绍:
maxsize是队列中允许最大项数,省略则无大小限制。
  #方法介绍:
JoinableQueue的实例p除了与Queue对象相同的方法之外还具有:
q.task_done():使用者使用此方法发出信号,表示q.get()的返回项目已经被处理。如果调用此方法的次数大于从队列中删除项目的数量,将引发ValueError异常
q.join():生产者调用此方法进行阻塞,直到队列中所有的项目均被处理。阻塞将持续到队列中的每个项目均调用q.task_done()方法为止
from multiprocessing import Process,JoinableQueue
import time,random,os
def consumer(q):
while True:
res=q.get()
time.sleep(random.randint(1,3))
print('\033[45m%s 吃 %s\033[0m' %(os.getpid(),res)) q.task_done() #向q.join()发送一次信号,证明一个数据已经被取走了 def producer(name,q):
for i in range(10):
time.sleep(random.randint(1,3))
res='%s%s' %(name,i)
q.put(res)
print('\033[44m%s 生产了 %s\033[0m' %(os.getpid(),res))
q.join() if __name__ == '__main__':
q=JoinableQueue()
#生产者们:即厨师们
p1=Process(target=producer,args=('包子',q))
p2=Process(target=producer,args=('骨头',q))
p3=Process(target=producer,args=('泔水',q)) #消费者们:即吃货们
c1=Process(target=consumer,args=(q,))
c2=Process(target=consumer,args=(q,))
c1.daemon=True
c2.daemon=True #开始
p_l=[p1,p2,p3,c1,c2]
for p in p_l:
p.start() p1.join()
p2.join()
p3.join()
print('主') #主进程等--->p1,p2,p3等---->c1,c2
#p1,p2,p3结束了,证明c1,c2肯定全都收完了p1,p2,p3发到队列的数据
#因而c1,c2也没有存在的价值了,应该随着主进程的结束而结束,所以设置成守护进程

完美

python并发编程之多进程的更多相关文章

  1. Python并发编程__多进程

    Python并发编程_多进程 multiprocessing模块介绍 python中的多线程无法利用多核优势,如果想要充分地使用多核CPU的资源(os.cpu_count()查看),在python中大 ...

  2. Python进阶(4)_进程与线程 (python并发编程之多进程)

    一.python并发编程之多进程 1.1 multiprocessing模块介绍 由于GIL的存在,python中的多线程其实并不是真正的多线程,如果想要充分地使用多核CPU的资源,在python中大 ...

  3. python并发编程02 /多进程、进程的创建、进程PID、join方法、进程对象属性、守护进程

    python并发编程02 /多进程.进程的创建.进程PID.join方法.进程对象属性.守护进程 目录 python并发编程02 /多进程.进程的创建.进程PID.join方法.进程对象属性.守护进程 ...

  4. python并发编程之多进程(三):共享数据&进程池

    一,共享数据 展望未来,基于消息传递的并发编程是大势所趋 即便是使用线程,推荐做法也是将程序设计为大量独立的线程集合 通过消息队列交换数据.这样极大地减少了对使用锁定和其他同步手段的需求, 还可以扩展 ...

  5. python并发编程之多进程(二):互斥锁(同步锁)&进程其他属性&进程间通信(queue)&生产者消费者模型

    一,互斥锁,同步锁 进程之间数据不共享,但是共享同一套文件系统,所以访问同一个文件,或同一个打印终端,是没有问题的, 竞争带来的结果就是错乱,如何控制,就是加锁处理 part1:多个进程共享同一打印终 ...

  6. 28 python 并发编程之多进程

    一 multiprocessing模块介绍 python中的多线程无法利用多核优势,如果想要充分地使用多核CPU的资源(os.cpu_count()查看),在python中大部分情况需要使用多进程.P ...

  7. 二 python并发编程之多进程-重点

    一 multiprocessing模块介绍 python中的多线程无法利用多核优势,如果想要充分地使用多核CPU的资源(os.cpu_count()查看),在python中大部分情况需要使用多进程.P ...

  8. 二 python并发编程之多进程实现

    一 multiprocessing模块介绍 二 process类的介绍 三 process类的使用 四 守护进程 五 进程同步(锁) 六 队列 七 管道 八 共享数据 九 信号量 十 事件 十一 进程 ...

  9. python并发编程之多进程(实践篇)

    一 multiprocessing模块介绍 python中的多线程无法利用多核优势,如果想要充分地使用多核CPU的资源,在python中大部分情况需要使用多进程.Python提供了multiproce ...

  10. 第十篇.2、python并发编程之多进程

    一 multiprocessing模块介绍 python中的多线程无法利用多核优势,如果想要充分地使用多核CPU的资源(os.cpu_count()查看),在python中大部分情况需要使用多进程.P ...

随机推荐

  1. 【剑指Offer学习】【面试题50:树中两个结点的最低公共祖先】

    题目:求树中两个结点的最低公共祖先,此树不是二叉树,而且没有指向父节点的指针. 树的结点定义 private static class TreeNode { int val; List<Tree ...

  2. SSH Secure Shell显示serverTomcat后台内容

    作为linux小白,仅仅有学一点记一点了: 部署server的时候.常常须要向本地一样查看控制台输出,在linux上能够通过查看日志输出替代,当然也能够通过命令让日志实时显示在命令窗体,这对用惯了wi ...

  3. gsp页面标签

    gsp--Groovy Servers Pages <g:actionSubmit value=""/> 提交button <g:actionSubmit act ...

  4. 【CODEFORCES】 A. Dreamoon and Sums

    A. Dreamoon and Sums time limit per test 1.5 seconds memory limit per test 256 megabytes input stand ...

  5. iOS OC Swift3.0 TableView 中tableviewcell的线左边不到边界

    Swift 3.0 func tableView(_ tableView: UITableView, willDisplay cell: UITableViewCell, forRowAt index ...

  6. [数据结构]C语言链表实现

    我学数据结构的时候也是感觉很困难,当我学完后我发现了之所以困难时因为我没有系统的进行学习,而且很多教授都只是注重数据结构思想,而忽略了代码方面,为此我写了这些博文给那些试图自学数据结构的朋友,希望你们 ...

  7. Qt--自定义Delegate

    这是Model/View中的最后一篇了,Qt官方显然弱化了Controller在MVC中的作用,提供了一个简化版的Delegate:甚至在Model/View框架的使用中,提供了默认的委托,让这个控制 ...

  8. C#中&与&&的区别

    c#&是什么意思? 看过一些文章,关于这个的简单而容易被忽略的语法,说的总有点瑕疵. 贴代码15秒之内应该能知道c#中一个&和两个&&的区别,开始计数了........ ...

  9. ArcGIS API for JavaScript 4.2学习笔记[19] 搜索小部件——使用更多数据源

    上一篇中提到,空间搜索小部件是Search这个类的实例化,作为视图的ui属性添加进去后,视图就会出现搜索框了. 这节的主体代码和上篇几乎一致,区别就在上篇提及的sources属性. 先看看结果: 由于 ...

  10. 程序员的自我救赎---11.1:RPC接口使用规范

    <前言> (一) Winner2.0 框架基础分析 (二)PLSQL报表系统 (三)SSO单点登录 (四) 短信中心与消息中心 (五)钱包系统 (六)GPU支付中心 (七)权限系统 (八) ...