[Paper Reading]--Exploiting Relevance Feedback in Knowledge Graph
《Exploiting Relevance Feedback in Knowledge Graph》
Publication: KDD 2015
Authors: Yu Su, Shengqi Yang, etc.
Affiliation: UCSB...
1. Short description:
p { margin-bottom: 0.1in; line-height: 120% }
a:link { }
This paper formulate the novice graph relevance feedback problem, which applies relevance feedback in information retrieval area to graph query. User positive and negative feedback to inversely input the original graph query and improve the query result.
2. Focus: graph query, subgraph matching
3. Novelty: user relevance feedback; binary classifier to decide the trade-off to re-rank or re-search from graph
4. Motivation:
the new thing about this paper is it consider the ambigous of user input query.
users who do not need to understand the complexity of the schema of data graph, so the input node name, type or keywords are generally ambigous or even not in the data graph.
5. Algorithms:
the query-specific function is based on the previous paper in the same group -- SLQ "schemaless and structureless graph querying "
the new graph matching function after tuning is $g(\theta^{*} )$
The framework is as follows:
It explored the two types of inferences:
Type inference: Infer the implicit type of each query node
Context Inference: neighborhood of the entity
The cons:
In my opinion:
(1) It only explored the simple two node and three node star query
(2) The ground truth for deciding the re-rank and re-search was not clearly stated, which I think it is important to decide the runtime trade-off of the re-rank and re-search
(3) In reality, it is also not reliable and challenging to construct the ground truth for a new data graph to decide the runtime trade-off.
Reference:
Su, Yu, et al. "Exploiting relevance feedback in knowledge graph search." Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2015.
[Paper Reading]--Exploiting Relevance Feedback in Knowledge Graph的更多相关文章
- Deep Learning 和 Knowledge Graph howto
领军大家: Geoffrey E. Hinton http://www.cs.toronto.edu/~hinton/ 阅读列表: reading lists and survey papers fo ...
- Paper Reading: Stereo DSO
开篇第一篇就写一个paper reading吧,用markdown+vim写东西切换中英文挺麻烦的,有些就偷懒都用英文写了. Stereo DSO: Large-Scale Direct Sparse ...
- 聊一聊google的Knowledge Graph
什么是Knowledge Graph? 它是google用于增强它的搜索引擎的功能和提高搜索结果质量的一种技术.在2012年5月16日提出,除了提供基本的与主题相关的链接服务之外,它还能结构化与主题相 ...
- 收藏:左路Deep Learning+右路Knowledge Graph,谷歌引爆大数据
发表于2013-01-18 11:35| 8827次阅读| 来源sina微博 条评论| 作者邓侃 数据分析智能算法机器学习大数据Google 摘要:文章来自邓侃的博客.数据革命迫在眉睫. 各大公司重兵 ...
- 1. 通俗易懂解释知识图谱(Knowledge Graph)
1. 通俗易懂解释知识图谱(Knowledge Graph) 2. 知识图谱-命名实体识别(NER)详解 3. 哈工大LTP解析 1. 前言 从一开始的Google搜索,到现在的聊天机器人.大数据风控 ...
- 学习笔记之知识图谱 (Knowledge Graph)
Knowledge Graph - Wikipedia https://en.wikipedia.org/wiki/Knowledge_Graph The Knowledge Graph is a k ...
- Multi-Task Feature Learning for Knowledge Graph Enhanced Recommendation(知识图谱)
知识图谱(Knowledge Graph,KG)可以理解成一个知识库,用来存储实体与实体之间的关系.知识图谱可以为机器学习算法提供更多的信息,帮助模型更好地完成任务. 在推荐算法中融入电影的知识图谱, ...
- RippleNet: Propagating User Preferences on the Knowledge Graph for Recommender Systems
一.摘要 为了解决协同过滤的稀疏性和冷启动问题,社交网络或项目属性等辅助信息被用来提高推荐性能. 考虑到知识图谱是边信息的来源,为了解决现有的基于嵌入和基于路径的知识图谱感知重构方法的局限性,本文提出 ...
- Efficient Knowledge Graph Accuracy Evaluation 论文笔记
前言 这篇论文主要讲的是知识图谱正确率的评估,将知识图谱的正确率定义为知识图谱中三元组表述正确的比例.如果要计算知识图谱的正确率,可以用人力一一标注是否正确,计算比例.但是实际上,知识图谱往往很大,不 ...
随机推荐
- 【方法】Html5实现文件异步上传
1 简介 开发文件上传功能从来不是一件愉快的事,异步上传更是如此,使用过iframe和Flash的上传方案,也都感觉十分的别扭.本文简要简绍利用Html5的FormData实现文件的异步上传,还可以实 ...
- servlet context 和 servlet config
servletConfig Servlet容器初始化一个servlet对象时,会为这个servlet对象创建一个servletConfig对象,该对象中包含了servlet的<init-para ...
- 第三章(附)mysql表类型MyISAM和InnoDB区别(决定了是否支持事务)
mysql表类型MyISAM和InnoDB区别 MyISAM:这个是默认类型,它是基于传统的ISAM类型,ISAM是Indexed Sequential Access Method (有索引的顺序访问 ...
- ES6核心内容精讲--快速实践ES6(三)
Promise 是什么 Promise是异步编程的一种解决方案.Promise对象表示了异步操作的最终状态(完成或失败)和返回的结果. 其实我们在jQuery的ajax中已经见识了部分Promise的 ...
- 每天一道Java题[10]
题目 阐述创建线程最常用的两种方法及其对比. 解答 方法一:继承Thread类实现 步骤: 创建Thread类的子类,如MyThread. 重写Thread类的run()方法. 实例化MyThread ...
- Simulation of empirical Bayesian methods (using baseball statistics)
Previously in this series: The beta distribution Empirical Bayes estimation Credible intervals The B ...
- 移动端web解决方案
范畴 移动端web浏览器.至少需要适配的,UC,QQ,各手机内置浏览器,chrome,safari. 是不是觉得和PC端差不多?错了!每款同一版本ios的内置浏览器一样.但每款同一版本android的 ...
- 使用VideoView开发视频总结
一.VideoView及其相关组件总结 在Android中,播放视频有2种方式,第一种方式是使用MediaPlayer结合SurfaceView来播放,通过MediaPlayer来控制视频的播放.暂停 ...
- C语言错题小本子
int a; ; a = ! x< //a的值是多少 我的答案:0, 正确答案:1 错误原因:没有熟练掌握运算符的优先级 // 找出下面无效的C语言变量名 A. _a B. main C. pr ...
- 【web前端开发】浏览器兼容性处理
1.居中问题div里的内容,IE默认为居中,而FF默认为左对齐,可以尝试增加代码margin: 0 auto;2.高度问题两上下排列或嵌套的div,上面的div设置高度(height),如果div里的 ...