MapReduce

一种分布式计算模型,解决海量数据的计算问题,MapReduce将计算过程抽象成两个函数

Map(映射):对一些独立元素(拆分后的小块)组成的列表的每一个元素进行指定的操作,可以高度并行。

Reduce(化简):对一个列表的元素进行合并

input -> map -> reduce -> output
数据流通格式<kay,value> eg:
原始数据 -> map input map map output(reduce input) shuffle reduce reduce output
example example -> <0,example example> -> <example,1> <example,1> -> <example,list(1,1,1)> -> <example,3>
helo wrold example -> <16,helo wrold example> -> <hello,1> <wrold,1> <example,1> -> <hello,list(1)> <...> -> <hello,1> <wrold,1>

MapReduce底层执行流程

一.Input

InputFormat

读取数据
转换成<key,value>

FileInputFormat

TextInputFormat 文本初始化,一行变成一个KY对,用偏移量作为Key、

二.Map

ModuleMapper类继承Mapper类

执行map(KEYIN,VALUEIN,KETOUT,VALUEOUT),
默认情况下
KEYIN:LongWritable
KEYVALUE:TEXT

三.shuffle(洗牌)

map,output<key,value>

a)先存在内存中
b)合并combiner[可选] -> <hadoop,1> <hadoop,1> =>> <hadoop,2>
c)spill,溢写到磁盘中,存储成很多小文件,过程如下
1.分区Partition(数量跟Reduce数量一致)
2.在分区内进行排序sort
d)合并,Merge ->大文件(Map Task任务运行的机器的本地磁盘中)
e)排序sort
f)压缩[可选]

四.reduce

reduce Task会到Map Task运行的机器上COPY要处理的数据

a)合并merge
b)排序
c)分组Group(相同的key的value放在一起)

ModuleReduceper类继承Reduce类

执行reduce(KEYIN,VALUEIN,KETOUT,VALUEOUT)
map的输出类型就是reduce的输入类型,中间的shuffle只是进行合并分组排序,不会改变数据类型

五.output

OutputFormat

写数据

FileOutputFormat

TextInputFormat 每个KeyValue对输出一行,key和value之间使用分隔符\t,默认调用key和value的toString方法

代码如下:

package com.cenzhongman.mapreduce;

import java.io.IOException;
import java.util.StringTokenizer; import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner; //继承Configured类,从而继承了该类的getConf();line 81
//实现Tool方法,实现run方法 line79
//通过Toolrunner工具类的run方法实现,setConf(),达到conf传递的效果
public class WordCount extends Configured implements Tool {
// 1.Map class
public static class WordcountMapper extends Mapper<LongWritable, Text, Text, IntWritable> { private Text mapOutputKey = new Text();
private final static IntWritable mapOutputValue = new IntWritable(1); @Override
public void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text, IntWritable>.Context context)
throws IOException, InterruptedException {
// line value
String lineValue = value.toString(); // split
// String[] strs = lineValue.split(" ");
StringTokenizer stringTokennizer = new StringTokenizer(lineValue); // iterator
while (stringTokennizer.hasMoreTokens()) {
// get word value
String wordValue = stringTokennizer.nextToken(); // set value
mapOutputKey.set(wordValue); // output
context.write(mapOutputKey, mapOutputValue);
}
} @Override
public void cleanup(Mapper<LongWritable, Text, Text, IntWritable>.Context context)
throws IOException, InterruptedException {
// nothing
// 在执行map之前会执行该函数,可用于JDBC等
// Reduce同理,不再重复
} @Override
public void setup(Mapper<LongWritable, Text, Text, IntWritable>.Context context)
throws IOException, InterruptedException {
// nothing
// 在执行map之后会执行该函数,可用于JDBC断开等
} } // 2.Reduce class
public static class WordcountReducer extends Reducer<Text, IntWritable, Text, IntWritable> {
private IntWritable reduceOutputValue = new IntWritable(); @Override
public void reduce(Text key, Iterable<IntWritable> values, Context context)
throws IOException, InterruptedException {
// sum tmp
int sum = 0;
// iterator
for (IntWritable value : values) {
// total
sum += value.get();
}
// set value
reduceOutputValue.set(sum); // output
context.write(key, reduceOutputValue); } } // 3.driver
public int run(String[] args) throws Exception {
// 1.get configuration
Configuration conf = getConf(); // 2.create Job
Job job = Job.getInstance(conf, this.getClass().getSimpleName());
// run jar
job.setJarByClass(this.getClass()); // 3.set job
// input -> map -> reduce -> output
// 3.1 input from type
Path inPath = new Path(args[0]);
FileInputFormat.addInputPath(job, inPath); // 3.2 map
job.setMapperClass(WordcountMapper.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(IntWritable.class); //****************shuffle配置***********************
//1)Partition分区
// job.setPartitionerClass(cls);
//2)sort排序
// job.setSortComparatorClass(cls);
//combiner[可选]Map中的合并
// job.setCombinerClass(cls);
//Group分组
// job.setGroupingComparatorClass(cls);
//压缩设置在配置文件中设置,也可以在conf对象中设置 //****************shuffle配置*********************** // 3.3 reduce
job.setReducerClass(WordcountReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class); // 3.4 output
Path outPath = new Path(args[1]);
FileOutputFormat.setOutputPath(job, outPath); // 4 submit job
boolean isSuccess = job.waitForCompletion(true); //set reduce number[可选,优化方式之一,默认值为1]配置文件mapreduce.job.reduces
job.setNumReduceTasks(2); return isSuccess ? 0 : 1;
} public static void main(String[] args) throws Exception { Configuration conf = new Configuration();
//set compress设置压缩方式,可以从官方文件和源码中得到-----可选,优化方式之一
conf.set("mapreduce.map.output.compress", "true");
conf.set("mapreduce.map.output.compress.codec", "org.apache.hadoop.io.compress.SnappyCodec"); // int status = new WordCount().run(args);
int status = ToolRunner.run(conf, new WordCount(), args);
System.exit(status);
}
}

MapReduce执行流程及程序编写的更多相关文章

  1. 016_笼统概述MapReduce执行流程结合wordcount程序

    数据传输<key,value>     File-->  <key,value>  -->map(key,value)  --> mapResult<k ...

  2. mapreduce执行流程

    角色描述:JobClient:执行任务的客户端JobTracker:任务调度器TaskTracker:任务跟踪器Task:具体的任务(Map OR Reduce) 从生命周期的角度来看,mapredu ...

  3. 2.25-2.26 MapReduce执行流程Shuffle讲解

    原文链接:https://langyu.iteye.com/blog/992916 Shuffle过程是MapReduce的核心,也被称为奇迹发生的地方.要想理解MapReduce, Shuffle是 ...

  4. 003 01 Android 零基础入门 01 Java基础语法 01 Java初识 03 Java程序的执行流程

    003 01 Android 零基础入门 01 Java基础语法 01 Java初识 03 Java程序的执行流程 Java程序长啥样? 首先编写一个Java程序 记事本编写程序 打开记事本 1.wi ...

  5. 一个 Spark 应用程序的完整执行流程

    一个 Spark 应用程序的完整执行流程 1.编写 Spark Application 应用程序 2.打 jar 包,通过 spark-submit 提交执行 3.SparkSubmit 提交执行 4 ...

  6. MapReduce架构与执行流程

    一.MapReduce是用于解决什么问题的? 每一种技术的出现都是用来解决实际问题的,否则必将是昙花一现,那么MapReduce是用来解决什么实际的业务呢? 首先来看一下MapReduce官方定义: ...

  7. [Hadoop]浅谈MapReduce原理及执行流程

    MapReduce MapReduce原理非常重要,hive与spark都是基于MR原理 MapReduce采用多进程,方便对每个任务资源控制和调配,但是进程消耗更多的启动时间,因此MR时效性不高.适 ...

  8. Mybatis入门程序编写

    执行原理 入门程序编写 1.pom.xml 文件 <dependencies> <dependency> <groupId>mysql</groupId> ...

  9. MapReduce作业的执行流程

    MapReduce任务执行总流程 一个MapReduce作业的执行流程是:代码编写 -> 作业配置 -> 作业提交 -> Map任务的分配和执行 -> 处理中间结果 -> ...

随机推荐

  1. ListView的使用(一)

    在android开发中ListView是比较常用的组件,它以列表的形式展示具体内容,并且能够根据数据的长度自适应显示. 列表的显示需要三个元素: 1.ListVeiw 用来展示列表的View. 2.适 ...

  2. 我必须得告诉大家的MySQL优化原理

    本文转载自http://www.jianshu.com/p/d7665192aaaf 说起MySQL的查询优化,相信大家积累一堆技巧:不能使用SELECT *.不使用NULL字段.合理创建索引.为字段 ...

  3. .net后台获取DataTable数据,转换成json数组后传递到前台,通过jquery去操作json数据

    一,后台获取json数据 protected void Page_Load(object sender, EventArgs e){  DataTable dt = DBhepler.GetDataT ...

  4. javaWeb学习总结(10)- Filter(过滤器)学习

    一.Filter简介 Filter也称之为过滤器,它是Servlet技术中最激动人心的技术,WEB开发人员通过Filter技术,对web服务器管理的所有 web资源:例如Jsp, Servlet, 静 ...

  5. TCP/UDP客户端

    Python 网络编程----模块socekt 在渗透测试的过程中,经常会遇到需要创建一个TCP客户端来连接服务器.发送垃圾数据.进行模糊测试活进行其他任务的情况. 简单的TCP客户端代码: #!/u ...

  6. neutron flat和vxlan网络访问外网流量走向

    OpenStack版本:Mitaka 物理节点: Hostname Management IP Tunnel IP Role test-ctrl-01 192.168.100.11 192.168.1 ...

  7. CSS小技巧-怎样让每行多余的文字显示文省略号?

    1.white-space:nowrap 如果是中文,则需要设置行末不断行 2.overflow:hidden 设置超出控件范围隐藏 3.text-overflow:ellipsis

  8. Spring Task每次都会调用两次的问题

    最近一个Spring Mvc的项目中需要定时执行一个任务,所以使用了spring 自带的Task功能.本地调试的时候一切都正常,可是部署到服务器上后,每次任务都会被调用两次.在网上搜索了相关的问题,排 ...

  9. 用GAN生成二维样本的小例子

    同步自我的知乎专栏:https://zhuanlan.zhihu.com/p/27343585 本文完整代码地址:Generative Adversarial Networks (GANs) with ...

  10. 前端基于JQgrid实现自定义列头展示

    先上效果图   因为公司项目的需要,并且公司只有我这一个能写js的前端,这个自定义展示jqgrid列选项的需求依然是交由我写,辣么就分享一下我的工作成果. //初始化函数 multiSelectCol ...