什么是可重入锁?

      ReentrantLock是可重入锁,什么是可重入锁呢?可重入锁就是当前持有该锁的线程能够多次获取该锁,无需等待。可重入锁是如何实现的呢?这要从ReentrantLock的一个内部类Sync的父类说起,Sync的父类是AbstractQueuedSynchronizer(后面简称AQS)。

什么是AQS?

      AQS是JDK1.5提供的一个基于FIFO等待队列实现的一个用于实现同步器的基础框架,这个基础框架的重要性可以这么说,JUC包里面几乎所有的有关锁、多线程并发以及线程同步器等重要组件的实现都是基于AQS这个框架。AQS的核心思想是基于volatile int state这样的一个属性同时配合Unsafe工具对其原子性的操作来实现对当前锁的状态进行修改。当state的值为0的时候,标识改Lock不被任何线程所占有。

ReentrantLock锁的架构

       ReentrantLoc的架构相对简单,主要包括一个Sync的内部抽象类以及Sync抽象类的两个实现类。上面已经说过了Sync继承自AQS,把AQS的父类AbstractOwnableSynchronizer(后面简称AOS)也画了进来,可以稍微提一下,AOS主要提供一个exclusiveOwnerThread属性,用于关联当前持有该锁的线程。另外、Sync的两个实现类分别是NonfairSync和FairSync,由名字大概可以猜到,一个是用于实现公平锁、一个是用于实现非公平锁。那么Sync为什么要被设计成内部类呢?我们可以看看AQS主要提供了哪些protect的方法用于修改state的状态,我们发现Sync被设计成为安全的外部不可访问的内部类。ReentrantLock中所有涉及对AQS的访问都要经过Sync,其实,Sync被设计成为内部类主要是为了安全性考虑,这也是作者在AQS的comments上强调的一点。

AQS的等待队列

     作为AQS的核心实现的一部分,举个例子来描述一下这个队列长什么样子,我们假设目前有三个线程Thread1、Thread2、Thread3同时去竞争锁,如果结果是Thread1获取了锁,Thread2和Thread3进入了等待队列,AQS的等待队列基于一个双向链表实现的,HEAD节点不关联线程,后面两个节点分别关联Thread2和Thread3,他们将会按照先后顺序被串联在这个队列上。这个时候如果后面再有线程进来的话将会被当做队列的TAIL。

入队列

public final void acquire(int arg) {
if (!tryAcquire(arg) &&
acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
selfInterrupt();
}
三个线程同时进来,他们会首先会通过CAS去修改state的状态,如果修改成功,那么竞争成功,因此这个时候三个线程只有一个CAS成功,其他两个线程失败,也就是tryAcquire返回false。
接下来,addWaiter会把将当前线程关联的EXCLUSIVE类型的节点入队列:

private Node addWaiter(Node mode) {
Node node = new Node(Thread.currentThread(), mode);
Node pred = tail;
if (pred != null) {
node.prev = pred;
if (compareAndSetTail(pred, node)) {
pred.next = node;
return node;
}
}
enq(node);
return node;
}
如果队尾节点不为null,则说明队列中已经有线程在等待了,那么直接入队尾。对于我们举的例子,这边的逻辑应该是走enq,也就是开始队尾是null,其实这个时候整个队列都是null的。

private Node enq(final Node node) {
for (;;) {
Node t = tail;
if (t == null) { // Must initialize
if (compareAndSetHead(new Node()))
tail = head;
} else {
node.prev = t;
if (compareAndSetTail(t, node)) {
t.next = node;
return t;
}
}
}
}
如果Thread2和Thread3同时进入了enq,同时t==null,则进行CAS操作对队列进行初始化,这个时候只有一个线程能够成功,然后他们继续进入循环,第二次都进入了else代码块,这个时候又要进行CAS操作,将自己放在队尾,因此这个时候又是只有一个线程成功,我们假设是Thread2成功,哈哈,Thread2开心的返回了,Thread3失落的再进行下一次的循环,最终入队列成功,返回自己。

2)并发问题

基于上面两段代码,他们是如何实现不进行加锁,当有多个线程,或者说很多很多的线程同时执行的时候,怎么能保证最终他们都能够乖乖的入队列而不会出现并发问题的呢?这也是这部分代码的经典之处,多线程竞争,热点、单点在队列尾部,多个线程都通过【CAS+死循环】这个free-lock黄金搭档来对队列进行修改,每次能够保证只有一个成功,如果失败下次重试,如果是N个线程,那么每个线程最多loop N次,最终都能够成功。

3)挂起等待线程

上面只是addWaiter的实现部分,那么节点入队列之后会继续发生什么呢?那就要看看acquireQueued是怎么实现的了,为保证文章整洁,代码我就不贴了,同志们自行查阅,我们还是以上面的例子来看看,Thread2和Thread3已经被放入队列了,进入acquireQueued之后:
  1. 对于Thread2来说,它的prev指向HEAD,因此会首先再尝试获取锁一次,如果失败,则会将HEAD的waitStatus值为SIGNAL,下次循环的时候再去尝试获取锁,如果还是失败,且这个时候prev节点的waitStatus已经是SIGNAL,则这个时候线程会被通过LockSupport挂起。
  1. 对于Thread3来说,它的prev指向Thread2,因此直接看看Thread2对应的节点的waitStatus是否为SIGNAL,如果不是则将它设置为SIGNAL,再给自己一次去看看自己有没有资格获取锁,如果Thread2还是挡在前面,且它的waitStatus是SIGNAL,则将自己挂起。
       如果Thread1死死的握住锁不放,那么Thread2和Thread3现在的状态就是挂起状态啦,而且HEAD,以及Thread的waitStatus都是SIGNAL,尽管他们在整个过程中曾经数次去尝试获取锁,但是都失败了,失败了不能死循环呀,所以就被挂起了。

锁释放-等待线程唤起

我们来看看当Thread1这个时候终于做完了事情,调用了unlock准备释放锁,这个时候发生了什么。
public final boolean release(int arg) {
if (tryRelease(arg)) {
Node h = head;
if (h != null && h.waitStatus != 0)
unparkSuccessor(h);
return true;
}
return false;
}
      首先,Thread1会修改AQS的state状态,加入之前是1,则变为0,注意这个时候对于非公平锁来说是个很好的插入机会,举个例子,如果锁是公平锁,这个时候来了Thread4,那么这个锁将会被Thread4抢去。。。
  我们继续走常规路线来分析,当Thread1修改完状态了,判断队列是否为null,以及队头的waitStatus是否为0,如果waitStatus为0,说明队列无等待线程,按照我们的例子来说,队头的waitStatus为SIGNAL=-1,因此这个时候要通知队列的等待线程,可以来拿锁啦,这也是unparkSuccessor做的事情,unparkSuccessor主要做三件事情:
  1. 将队头的waitStatus设置为0.
  1. 通过从队列尾部向队列头部移动,找到最后一个waitStatus<=0的那个节点,也就是离队头最近的没有被cancelled的那个节点,队头这个时候指向这个节点。
  1. 将这个节点唤醒,其实这个时候Thread1已经出队列了。
     还记得线程在哪里挂起的么,上面说过了,在acquireQueued里面,我没有贴代码,自己去看哦。这里我们也大概能理解AQS的这个队列为什么叫FIFO队列了,因此每次唤醒仅仅唤醒队头等待线程,让队头等待线程先出。

羊群效应

     这里说一下羊群效应,当有多个线程去竞争同一个锁的时候,假设锁被某个线程占用,那么如果有成千上万个线程在等待锁,有一种做法是同时唤醒这成千上万个线程去去竞争锁,这个时候就发生了羊群效应,海量的竞争必然造成资源的剧增和浪费,因此终究只能有一个线程竞争成功,其他线程还是要老老实实的回去等待。AQS的FIFO的等待队列给解决在锁竞争方面的羊群效应问题提供了一个思路:保持一个FIFO队列,队列每个节点只关心其前一个节点的状态,线程唤醒也只唤醒队头等待线程。其实这个思路已经被应用到了分布式锁的实践中,见:Zookeeper分布式锁的改进实现方案。

总结

     这篇文章粗略的介绍一下ReentrantLock以及锁实现基础框架AQS的实现原理,大致上通过举了个三个线程竞争锁的例子,从lock、unlock过程发生了什么这个问题,深入了解AQS基于状态的标识以及FIFO等待队列方面的工作原理,最后扩展介绍了一下羊群效应问题,博主才疏学浅,还请多多指教。

ReentrantLock 以及 AQS 实现原理的更多相关文章

  1. 扒一扒ReentrantLock以及AQS实现原理

    提到JAVA加锁,我们通常会想到synchronized关键字或者是Java Concurrent Util(后面简称JCU)包下面的Lock,今天就来扒一扒Lock是如何实现的,比如我们可以先提出一 ...

  2. ReentrantLock以及AQS实现原理

    什么是可重入锁? ReentrantLock是可重入锁,什么是可重入锁呢?可重入锁就是当前持有该锁的线程能够多次获取该锁,无需等待.可重入锁是如何实现的呢?这要从ReentrantLock的一个内部类 ...

  3. 透过 ReentrantLock 分析 AQS 的实现原理

    对于 Java 开发者来说,都会碰到多线程访问公共资源的情况,这时候,往往都是通过加锁来保证访问资源结果的正确性.在 java 中通常采用下面两种方式来解决加锁得问题: synchronized 关键 ...

  4. 面经手册 · 第17篇《码农会锁,ReentrantLock之AQS原理分析和实践使用》

    作者:小傅哥 博客:https://bugstack.cn 沉淀.分享.成长,让自己和他人都能有所收获! 一.前言 如果你相信你做什么都能成,你会自信的多! 千万不要总自我否定,尤其是职场的打工人.如 ...

  5. 并发编程学习笔记(5)----AbstractQueuedSynchronizer(AQS)原理及使用

    (一)什么是AQS? 阅读java文档可以知道,AbstractQueuedSynchronizer是实现依赖于先进先出 (FIFO) 等待队列的阻塞锁和相关同步器(信号量.事件,等等)提供一个框架, ...

  6. AQS工作原理分析

      AQS工作原理分析 一.大致介绍1.前面章节讲解了一下CAS,简单讲就是cmpxchg+lock的原子操作:2.而在谈到并发操作里面,我们不得不谈到AQS,JDK的源码里面好多并发的类都是通过Sy ...

  7. 从ReentrantLock看AQS (AbstractQueuedSynchronizer) 运行流程

    从ReentrantLock看AQS (AbstractQueuedSynchronizer) 运行流程 概述 本文将以ReentrantLock为例来讲解AbstractQueuedSynchron ...

  8. AQS实现原理

    AQS实现原理 AQS中维护了一个volatile int state(共享资源)和一个CLH队列.当state=1时代表当前对象锁已经被占用,其他线程来加锁时则会失败,失败的线程被放入一个FIFO的 ...

  9. ReentrantLock 与 AQS 源码分析

    ReentrantLock 与 AQS 源码分析 1. 基本结构    重入锁 ReetrantLock,JDK 1.5新增的类,作用与synchronized关键字相当,但比synchronized ...

随机推荐

  1. zBase --轻量级DOM操作库

    项目地址:ZengTianShengZ-github zBase-1.2.0 --v3 修复部分bug,添加AMD规范测试 zBase-1.1.0 --v2 对 v1 版本做了升级,优化DOM查找,简 ...

  2. Django之admin

    django amdin是django提供的一个后台管理页面,改管理页面提供完善的html和css,使得你在通过Model创建完数据库表之后, 就可以对数据进行增删改查,而使用django admin ...

  3. 中软卓越IT培训:给IT程序员的18个忠告

    1 .想清楚,写清楚,说清楚,才是真正的清楚! 2 .多花点时间沟通清楚需求,才能把握正确方向! 3 .修复需求错误的成本是代码错误的几十倍! 4 .程序员最大的坏习惯就是:急于动手写代码! 5 .提 ...

  4. 剑指offer_(4)

    重建二叉树: 题目描述 输入某二叉树的前序遍历和中序遍历的结果,请重建出该二叉树.假设输入的前序遍历和中序遍历的结果中都不含重复的数字. 例如输入前序遍历序列{1,2,4,7,3,5,6,8}和中序遍 ...

  5. [设计模式] Iterator - 迭代器模式:由一份奥利奥早餐联想到的设计模式

    Iterator - 迭代器模式 目录 前言 回顾 UML 类图 代码分析 抽象的 UML 类图 思考 前言 这是一包奥利奥(数组),里面藏了很多块奥利奥饼干(数组中的元素),我将它们放在一个碟子上慢 ...

  6. cuda编程学习2——add

    cudaMalloc()分配的指针有使用限制,设备指针的使用限制总结如下: 1.可以将其传递给在设备上执行的函数 2.可以在设备代码中使用其进行内存的读写操作 3.可以将其传递给在主机上执行的函数 4 ...

  7. iOS开发之layoutSubviews

    当发生下面两种情况该方法会被调用: (1)一个控件的frame发生改变的时候. (2)布局子控件的时候 一般在这里布局内部的子控件(设置子控件的frame) 例如: - (void)layoutSub ...

  8. strspn 和strcspn

    1.strcspn头文件:#inclued<string.h>定义函数:size_t strcspn(const char *s, const char * reject);函数说明:st ...

  9. Python 获取 网易云音乐热门评论

    最近在研究文本挖掘相关的内容,所谓巧妇难为无米之炊,要想进行文本分析,首先得到有文本吧.获取文本的方式有很多,比如从网上下载现成的文本文档,或者通过第三方提供的API进行获取数据.但是有的时候我们想要 ...

  10. 【C++】指针与引用的区别

    本文主要总结在C++中指针与引用的区别. 从定义与性质来看指针与引用有如下区别: 指针表示的是一块变量的地址 引用表示一个变量的别名. 因此指针变量需要占用空间(一个指针变量在32位系统下占用4字节, ...