描述

这里是欢乐的进香河,这里是欢乐的幼儿园。

今天是2月14日,星期二。在这个特殊的日子里,老师带着同学们欢乐地跳着,笑着。校长从幼儿园旁边的小吃店买了大量的零食决定分给同学们。听到这个消息,所有同学都安安静静地排好了队,大家都知道,校长不喜欢调皮的孩子。

同学们依次排成了一列,其中有A位小朋友,有三个共同的欢乐系数O,S和U。如果有一位小朋友得到了x个糖果,那么她的欢乐程度就是f(x)=Ox^2+Sx+U。

现在校长开始分糖果了,一共有M个糖果。有些小朋友可能得不到糖果,对于那些得不到糖果的小朋友来说,欢乐程度就是1。如果一位小朋友得不到糖果,那么在她身后的小朋友们也都得不到糖果。(即这一列得不到糖果的小朋友一定是最后的连续若干位)

所有分糖果的方案都是等概率的。现在问题是:期望情况下,所有小朋友的欢乐程度的乘积是多少?呆呆同学很快就有了一个思路,只要知道总的方案个数T和所有方案下欢乐程度乘积的总和S,就可以得到答案Ans=S/T。现在他已经求出来了T的答案,但是S怎么求呢?他就不知道了。你能告诉他么?

因为答案很大,你只需要告诉他S对P取模后的结果。

后记:

虽然大家都知道,即便知道了T,知道了S对P取模后的结果,也没有办法知道期望情况下,所有小朋友欢乐程度的乘积。但是,当呆呆想到这一点的时候,已经彻底绝望了。

格式

输入格式

第一行有2个整数,分别是M和P。

第二行有一个整数A,第三行有一个整数O。

第四行有一个整数S,第五行有一个整数U。

输出格式

一个整数S,因为答案可能很大,你只需要输出S 对P取模后的结果。

样例1

样例输入1

4 100
4
1
0
0

样例输出1

63

限制

对于40%的数据,M<=150。

对于60%的数据,M<=2000。

对于80%的数据,M<=6000。

对于100%的数据,M<=10000,P<=255,A<=10^8,O<=4,S<=300,U<=100。

恶心之极的题目……只能手推一个非常可怕的dp转移方程……详细内容看代码吧

#include<cstdio>
#define rec(x,y) rec[aa[y]+x]
using namespace std; int n,m,a,b,c,p,l1,l2,l3,l0;
int rec[],ans=,aa[],f[];
int main(){
scanf("%d%d%d%d%d%d",&m,&p,&n,&a,&b,&c);
register int i,j;
if (n>m) n=m;
aa[]=;
a%=p;b%=p;c%=p;
f[]=c;
for (i=;i<p;i++){
f[i]=f[i-]+a*(*i-)+b;
while (f[i]>=p) f[i]-=p;
}
for (i=;i<=m;i++) aa[i]=aa[i-]+i-;
for (i=,j=;i<=m;i++,j++,j-=j>=p?p:)
if (i>p) rec(,i)=rec(,(j==?p-:j-)+);else rec(,i)=f[j];
int k=((rec(,)-*rec(,))+*p)%p,y=(*a-rec(,)+*rec(,)+*p)%p;
ans=rec(,m);
for (i=;i<=n;i++){
rec(i,i)=(rec(i-,i-)*f[])%p;
int d=rec(i,i);
j=i+;
d+=((k*rec(i-,j-))+(f[]*rec(i-,j-)));
rec(i,j)=(*rec(i,j-)+d+p)%p;
j++;
l0=aa[j]+i;l1=aa[j-]+i-;l2=aa[j-]+i-;l3=aa[j-]+i-;
for (;j<=m;j++){
d+=((y*rec[l3])+(k*rec[l2])+(f[]*rec[l1]));
rec[l0]=(*rec[l1+]-rec[l2+]+d+p)%p;
l0+=j;l1+=j-;l2+=j-;l3+=j-;
}
ans+=rec(i,m);
}
printf("%d\n",ans%p);
}

UPD at 2017.4.8

原来我这样是暴力水过,有空再写写正解

bzoj4332;vijos1955:JSOI2012 分零食的更多相关文章

  1. 【BZOJ 4332】 4332: JSOI2012 分零食 (FFT+快速幂)

    4332: JSOI2012 分零食 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 119  Solved: 66 Description 这里是欢乐 ...

  2. [BZOJ 4332] [JSOI2012]分零食(DP+FFT)

    [BZOJ 4332] [JSOI2012]分零食(DP+FFT) 题面 同学们依次排成了一列,其中有A位小朋友,有三个共同的欢乐系数O,S和U.如果有一位小朋友得到了x个糖果,那么她的欢乐程度就是\ ...

  3. BZOJ4332 JSOI2012 分零食 【倍增 + NTT】

    题目链接 权限题BZOJ4332 题解 容易想到\(dp\) 设\(g[i][j]\)表示前\(i\)人分到\(j\)颗糖的所有方案的乘积之和 设\(f(x) = Ox^2 + Sx + U\) \[ ...

  4. bzoj千题计划309:bzoj4332: JSOI2012 分零食(分治+FFT)

    https://www.lydsy.com/JudgeOnline/problem.php?id=4332 因为如果一位小朋友得不到糖果,那么在她身后的小朋友们也都得不到糖果. 所以设g[i][j] ...

  5. bzoj4332[JSOI2012]分零食

    一下午被这题的精度续掉了...首先可以找出一个多项式的等比数列的形式,然后类似poj的Matrix Series,不断倍增就可以了.用复数点值表示进行多次的多项式运算会刷刷地炸精度...应当用int存 ...

  6. bzoj 4332:JSOI2012 分零食

    描述 这里是欢乐的进香河,这里是欢乐的幼儿园. 今天是2月14日,星期二.在这个特殊的日子里,老师带着同学们欢乐地跳着,笑着.校长从幼儿园旁边的小吃店买了大量的零食决定分给同学们.听到这个消息,所有同 ...

  7. bzoj 4332: JSOI2012 分零食 快速傅立叶变换

    题目: Description 同学们依次排成了一列,其中有A位小朋友,有三个共同的欢乐系数O,S和U.如果有一位小朋友得到了x个糖果,那么她的欢乐程度就是\(f(x)=O*x^2+S*x+U\) 现 ...

  8. [洛谷P5075][JSOI2012]分零食

    题目大意:有$m(m\leqslant10^8)$个人站成一排,有$n(n\leqslant10^4)$个糖果,若第$i$个人没有糖果,那么第$i+1$个人也没有糖果.一个人有$x$个糖果会获得快乐值 ...

  9. BZOJ 4332: JSOI2012 分零食 FFT+分治

    好题好题~ #include <bits/stdc++.h> #define N 50020 #define ll long long #define setIO(s) freopen(s ...

随机推荐

  1. 【HTML5】音频视频

    <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...

  2. 【python】函数参数关键字索引、参数指定默认值、搜集参数

  3. 前端开发必备之MDN文档

    想下载MDN文档的看前面的内容就可以了. HTML 源码下载 MDN官方下载地址:https://developer.mozilla.org/media/developer.mozilla.org.t ...

  4. iOS 写给iOS开发者的React Native学习路线(转)

    我是一名iOS开发者,断断续续一年前开始接触React Native,最近由于工作需要,专职学习React Native也有一个多月了.网络上知识资源非常的多,但能让人豁然开朗.迅速学习的还是少数,我 ...

  5. xamarin android menu的用法

    在Android中的菜单有如下几种: OptionMenu:选项菜单,android中最常见的菜单,通过Menu键来调用 SubMenu:子菜单,android中点击子菜单将弹出一个显示子菜单项的悬浮 ...

  6. Effective Java 第三版——13. 谨慎地重写 clone 方法

    Tips <Effective Java, Third Edition>一书英文版已经出版,这本书的第二版想必很多人都读过,号称Java四大名著之一,不过第二版2009年出版,到现在已经将 ...

  7. 【http转https】其之一:腾讯云 DV SSL证书申请实验

    文:铁乐猫 2016年1月 前言 大概2017年12月28日左右公司提出以后需要将公司网站由http提升到https级别,以便谷歌和火狐浏览器将之认定为安全网站. 主要是出于客户.用户那边用火狐或谷歌 ...

  8. LANMP On CentOS 6

    摘要 --在CentOS6.2-x86_64上安装Apache,Nginx,MySQL,Php 环境:最小化安装系统 yum install lrzsz mlocate.x86_64 wget lso ...

  9. java构造器执行顺序一个有趣的简单实例

    一 Animal为父类,构造器中调用public(default.protected) say方法,Dog继承了Animal,并重载了say方法.新建Dog对象,查看运行结果,若将Animal中say ...

  10. 来一轮带注释的demo,彻底搞懂javascript中的replace函数

    javascript这门语言一直就像一位带着面纱的美女,总是看不清,摸不透,一直专注服务器端,也从来没有特别重视过,直到最近几年,javascript越来越重要,越来越通用.最近和前端走的比较近,借此 ...