转载自http://blog.fens.me/zookeeper-queue/

让Hadoop跑在云端系列文章,介绍了如何整合虚拟化和Hadoop,让Hadoop集群跑在VPS虚拟主机上,通过云向用户提供存储和计算的服务。

现在硬件越来越便宜,一台非品牌服务器,2颗24核CPU,配48G内存,2T的硬盘,已经降到2万块人民币以下了。这种配置如果简单地放几个web应用,显然是奢侈的浪费。就算是用来实现单节点的hadoop,对计算资源浪费也是非常高的。对于这么高性能的计算机,如何有效利用计算资源,就成为成本控制的一项重要议题了。

通过虚拟化技术,我们可以将一台服务器,拆分成12台VPS,每台2核CPU,4G内存,40G硬盘,并且支持资源重新分配。多么伟大的技术啊!现在我们有了12个节点的hadoop集群, 让Hadoop跑在云端,让世界加速。

关于作者:

  • 张丹(Conan), 程序员Java,R,PHP,Javascript
  • weibo:@Conan_Z
  • blog: http://blog.fens.me
  • email: bsspirit@gmail.com

转载请注明出处:
http://blog.fens.me/zookeeper-queue

前言
ZooKeeper是一个分步式的协作系统,何为协作,ZooKeeper价值又有何体现。通过这篇文章的分布式队列的案例,你将了解到ZooKeeper的强大。关于ZooKeeper的基本使用,请参考:ZooKeeper伪分步式集群安装及使用

目录

  1. 分布式队列
  2. 设计思路
  3. 程序实现

1. 分布式队列

队列有很多种产品,大都是消息系统所实现的,像ActiveMQ,JBossMQ,RabbitMQ,IBM-MQ等。分步式队列产品并不太多,像Beanstalkd。

本文实现的分布式对列,是基于ZooKeeper现实的一种同步的分步式队列,当一个队列的成员都聚齐时,这个队列才可用,否则一直等待所有成员到达。

2. 设计思路

创建一个父目录 /queue,每个成员都监控(Watch)标志位目录/queue/start 是否存在,然后每个成员都加入这个队列,加入队列的方式就是创建 /queue/x(i)的临时目录节点,然后每个成员获取 /queue 目录的所有目录节点,也就是 x(i)。判断 i 的值是否已经是成员的个数,如果小于成员个数等待 /queue/start 的出现,如果已经相等就创建 /queue/start。

产品流程图

应用实例

图标解释

  1. app1,app2,app3,app4是4个独立的业务系统
  2. zk1,zk2,zk3是ZooKeeper集群的3个连接点
  3. /queue,是znode的队列,假设队列长度为3
  4. /queue/x1,是znode队列中,1号排对者,由app1提交,同步请求,app1挂载等待
  5. /queue/x2,是znode队列中,2号排对者,由app2提交,同步请求,app2挂起等待
  6. /queue/x3,是znode队列中,3号排对者,由app3提交,同步请求,app3挂起等待
  7. /queue/start,当znode队列中满了,触发创建开始节点
  8. 当/qeueu/start被创建后,app4被启动,所有zk的连接通知同步程序(红色线),队列已完成,所有程序结束

注:

  • 1). 创建/queue/x1,/queue/x2,/queue/x3没有前后顺序,提交后程序就同步挂起。
  • 2). app1可以通过zk2提交,app2也可通过zk3提交
  • 3). app1可以提交3次请求,生成x1,x2,x3使用队列充满
  • 4). /queue/start被创建后,zk1会监听到这个事件,再告诉app1,队列已完成!

3. 程序实现

1). 单节点模拟实验

模拟app1,通过zk1,提交3个请求


public static void doOne() throws Exception {
String host1 = "192.168.1.201:2181";
ZooKeeper zk = connection(host1);
initQueue(zk);
joinQueue(zk, 1);
joinQueue(zk, 2);
joinQueue(zk, 3);
zk.close();
}

创建一个与服务器的连接


public static ZooKeeper connection(String host) throws IOException {
ZooKeeper zk = new ZooKeeper(host, 60000, new Watcher() {
// 监听/queue/start创建的事件
public void process(WatchedEvent event) {
if (event.getPath() != null && event.getPath().equals("/queue/start") && event.getType() == Event.EventType.NodeCreated) {
System.out.println("Queue has Completed.Finish testing!!!");
}
}
});
return zk;
}

出始化队列


public static void initQueue(ZooKeeper zk) throws KeeperException, InterruptedException {
System.out.println("WATCH => /queue/start");
zk.exists("/queue/start", true); if (zk.exists("/queue", false) == null) {
System.out.println("create /queue task-queue");
zk.create("/queue", "task-queue".getBytes(), Ids.OPEN_ACL_UNSAFE, CreateMode.PERSISTENT);
} else {
System.out.println("/queue is exist!");
}
}

增加队列节点


public static void joinQueue(ZooKeeper zk, int x) throws KeeperException, InterruptedException {
System.out.println("create /queue/x" + x + " x" + x);
zk.create("/queue/x" + x, ("x" + x).getBytes(), Ids.OPEN_ACL_UNSAFE, CreateMode.EPHEMERAL_SEQUENTIAL);
isCompleted(zk);
}

检查队列是否完整


public static void isCompleted(ZooKeeper zk) throws KeeperException, InterruptedException {
int size = 3;
int length = zk.getChildren("/queue", true).size(); System.out.println("Queue Complete:" + length + "/" + size);
if (length >= size) {
System.out.println("create /queue/start start");
zk.create("/queue/start", "start".getBytes(), Ids.OPEN_ACL_UNSAFE, CreateMode.EPHEMERAL);
}
}

启动函数main


public static void main(String[] args) throws Exception {
doOne();
}

运行结果:


WATCH => /queue/start
/queue is exist!
create /queue/x1 x1
Queue Complete:1/3
create /queue/x2 x2
Queue Complete:2/3
create /queue/x3 x3
Queue Complete:3/3
create /queue/start start
Queue has Completed.Finish testing!!!

完全符合我的们预期。接下来我们看分布式环境

2). 分布式模拟实验

模拟app1通过zk1提交x1,app2通过zk2提交x2,app3通过zk3提交x3


public static void doAction(int client) throws Exception {
String host1 = "192.168.1.201:2181";
String host2 = "192.168.1.201:2182";
String host3 = "192.168.1.201:2183"; ZooKeeper zk = null;
switch (client) {
case 1:
zk = connection(host1);
initQueue(zk);
joinQueue(zk, 1);
break;
case 2:
zk = connection(host2);
initQueue(zk);
joinQueue(zk, 2);
break;
case 3:
zk = connection(host3);
initQueue(zk);
joinQueue(zk, 3);
break;
}
}

注:

  • 1). 为了简单起见,我们没有增加复杂的多线程控制的机制。
  • 2). 没有调用zk.close()方法,也就是说,app1执行完单独的提交,app1就结束了,但zk1还存在着,所以/queue/x1存在于队列。
  • 3). 程序启动方法,分3次启动,命令行传不同的参数,分别是1,2,3

执行app1–>zk1


#日志输出
WATCH => /queue/start
/queue is exist!
create /queue/x1 x1
Queue Complete:1/3 #zookeeper控制台
[zk: 192.168.1.201:2181(CONNECTED) 4] ls /queue
[x10000000011]

执行app2–>zk2


#日志输出
WATCH => /queue/start
/queue is exist!
create /queue/x2 x2
Queue Complete:2/3 #zookeeper控制台
[zk: 192.168.1.201:2181(CONNECTED) 5] ls /queue
[x20000000012, x10000000011]

执行app3–>zk3


#日志输出
WATCH => /queue/start
/queue is exist!
create /queue/x3 x3
Queue Complete:3/3
create /queue/start start
Queue has Completed.Finish testing!!! #zookeeper控制台
[zk: 192.168.1.201:2181(CONNECTED) 6] ls /queue
[x30000000016, x10000000014, start, x20000000015]

/queue/stats被建立,打印出“Queue has Completed.Finish testing!!!”,代表调用app4完成!

我们完成分布式队列的实验,由于时间仓促。文字说明及代码难免有一些问题,请发现问题的同学帮忙指正。

下面贴一下完整的代码:


package org.conan.zookeeper.demo; import java.io.IOException; import org.apache.zookeeper.CreateMode;
import org.apache.zookeeper.KeeperException;
import org.apache.zookeeper.WatchedEvent;
import org.apache.zookeeper.Watcher;
import org.apache.zookeeper.ZooKeeper;
import org.apache.zookeeper.ZooDefs.Ids; public class QueueZooKeeper { public static void main(String[] args) throws Exception {
if (args.length == 0) {
doOne();
} else {
doAction(Integer.parseInt(args[0]));
}
} public static void doOne() throws Exception {
String host1 = "192.168.1.201:2181";
ZooKeeper zk = connection(host1);
initQueue(zk);
joinQueue(zk, 1);
joinQueue(zk, 2);
joinQueue(zk, 3);
zk.close();
} public static void doAction(int client) throws Exception {
String host1 = "192.168.1.201:2181";
String host2 = "192.168.1.201:2182";
String host3 = "192.168.1.201:2183"; ZooKeeper zk = null;
switch (client) {
case 1:
zk = connection(host1);
initQueue(zk);
joinQueue(zk, 1);
break;
case 2:
zk = connection(host2);
initQueue(zk);
joinQueue(zk, 2);
break;
case 3:
zk = connection(host3);
initQueue(zk);
joinQueue(zk, 3);
break;
}
} // 创建一个与服务器的连接
public static ZooKeeper connection(String host) throws IOException {
ZooKeeper zk = new ZooKeeper(host, 60000, new Watcher() {
// 监控所有被触发的事件
public void process(WatchedEvent event) {
if (event.getType() == Event.EventType.NodeCreated && event.getPath().equals("/queue/start")) {
System.out.println("Queue has Completed.Finish testing!!!");
}
}
});
return zk;
} public static void initQueue(ZooKeeper zk) throws KeeperException, InterruptedException {
System.out.println("WATCH => /queue/start");
zk.exists("/queue/start", true); if (zk.exists("/queue", false) == null) {
System.out.println("create /queue task-queue");
zk.create("/queue", "task-queue".getBytes(), Ids.OPEN_ACL_UNSAFE, CreateMode.PERSISTENT);
} else {
System.out.println("/queue is exist!");
}
} public static void joinQueue(ZooKeeper zk, int x) throws KeeperException, InterruptedException {
System.out.println("create /queue/x" + x + " x" + x);
zk.create("/queue/x" + x, ("x" + x).getBytes(), Ids.OPEN_ACL_UNSAFE, CreateMode.EPHEMERAL_SEQUENTIAL);
isCompleted(zk);
} public static void isCompleted(ZooKeeper zk) throws KeeperException, InterruptedException {
int size = 3;
int length = zk.getChildren("/queue", true).size(); System.out.println("Queue Complete:" + length + "/" + size);
if (length >= size) {
System.out.println("create /queue/start start");
zk.create("/queue/start", "start".getBytes(), Ids.OPEN_ACL_UNSAFE, CreateMode.EPHEMERAL);
}
} }

[转载] ZooKeeper实现分布式队列Queue的更多相关文章

  1. ZooKeeper实现分布式队列Queue

    ZooKeeper实现分布式队列Queue 让Hadoop跑在云端系列文章,介绍了如何整合虚拟化和Hadoop,让Hadoop集群跑在VPS虚拟主机上,通过云向用户提供存储和计算的服务. 现在硬件越来 ...

  2. ZooKeeper 实现分布式队列

    使用场景  在传统的单进程编程中,我们使用队列来存储数据结构,用来在多线程之间共享或者传递数据.在分布式环境下,同样需要一个类似单进程的组件, 用来实现跨进程.跨主机.跨网络的数据共享和数据传递.这就 ...

  3. 一种基于zookeeper的分布式队列的设计与实现

    package com.ysl.zkclient.queue; import com.ysl.zkclient.ZKClient; import com.ysl.zkclient.exception. ...

  4. 基于ZooKeeper的分布式锁和队列

    在分布式系统中,往往需要一些分布式同步原语来做一些协同工作,上一篇文章介绍了Zookeeper的基本原理,本文介绍下基于Zookeeper的Lock和Queue的实现,主要代码都来自Zookeeper ...

  5. 实现分布式队列ZooKeeper的实现

    一.背景 有一些时候,多个团队需要共同完成一个任务,比如,A团队将Hadoop集群计算的结果交给B团队继续计算,B完成了自己任务再交给C团队继续做.这就有点像业务系统的工作流一样,一环一环地传下去,直 ...

  6. Zookeeper应用之——队列(Queue)

    为了在Zookeeper中实现分布式队列,首先需要设计一个znode来存放数据,这个节点叫做队列节点,我们的例子中这个节点是/zookeeper/queue. 生产者向队列中存放数据,每一个消息都是队 ...

  7. 分布式队列ZooKeeper的实现

    一.背景 有一些时候,多个团队需要共同完成一个任务,比如,A团队将Hadoop集群计算的结果交给B团队继续计算,B完成了自己任务再交给C团队继续做.这就有点像业务系统的工作流一样,一环一环地传下 去, ...

  8. ZooKeeper系列(9):ZooKeeper实现分布式Barrier和Queue

    1. 快速开始 1.1概述: Zookeeper是Hadoop的一个子项目,它是分布式系统中的协调系统,可提供的服务主要有:配置服务.名字服务.分布式同步.组服务等. 1.2 使用常见 1.2.1 统 ...

  9. [转载] zookeeper 分布式锁服务

    转载自http://www.cnblogs.com/shanyou/archive/2012/09/22/2697818.html 分布式锁服务在大家的项目中或许用的不多,因为大家都把排他放在数据库那 ...

随机推荐

  1. IDL 使用数组

    1.下标方式 IDL> array=indgen(8) IDL> print,array 0 1 2 3 4 5 6 7 IDL> print,array[3] IDL> ar ...

  2. vue 实现 换一换 功能

    点击按钮列表页随机获取三个商品并渲染 后台返回的数据为 d为一个数组 数组 arr=[0,1,2]初始值 data:{ list:d, arr:[0,1,2] } 生产随机数 replace:func ...

  3. 使用spark对hive表中的多列数据判重

    本文处理的场景如下,hive表中的数据,对其中的多列进行判重deduplicate. 1.先解决依赖,spark相关的所有包,pom.xml spark-hive是我们进行hive表spark处理的关 ...

  4. Java IO编程全解(一)——Java的I/O演进之路

    转载请注明出处:http://www.cnblogs.com/Joanna-Yan/p/7419117.html JDK1.4之前的早期版本,Java对I/O的支持并不完善,开发人员在开发高性能I/O ...

  5. vb6.0的各种SHELL,CMD内部命令、外部命令、SHELL任意文件

    Private Declare Function ShellExecute Lib "shell32.dll" Alias "ShellExecuteA" (B ...

  6. 完美实现身份证校验 js正则

    注意: 1.只针对18为身份证号码进行校验,现在15位的应该很少了, 2.不区分xX大小写, 3.出生年份1900-2099,每月的天数也进行相关验证(考虑的闰月的情况), 4.校验规则详见,这个写的 ...

  7. win10 uwp 截图 获取屏幕显示界面保存图片

    本文主要讲如何保存我们的屏幕显示的,保存为图片,也就是截图,截我们应用显示的. UWP有一个功能,可以截图,RenderTargetBitmap 我们首先写一个Grid,我们需要给他名字,我这里给他S ...

  8. elasticsearch+kibana+metricbeat安装部署方法

    elasticsearch+kibana+metricbeat安装部署方法 本文是elasticsearch + kibana + metricbeat,没有涉及到logstash部分.通过beat收 ...

  9. 【转】S3C2440与SDRAM NorFlash NandFlash连线分析

    一.SDRAM(HY57V561620F)连线分析 1.  S3C2440 有27根地址线ADDR[26:0],8根片选信号ngcs0-ngcs7,对应bank0-bank7,当访问bankx 的地址 ...

  10. Vector容器构造函数

    No1 vector(); No2 vector( const vector& c ); No3 explicit vector( size_type num, const TYPE& ...