有关于VC维可以在很多机器学习的理论中见到,它是一个重要的概念。在读《神经网络原理》的时候对一个实例不是很明白,通过这段时间观看斯坦福的机器学习公开课及相关补充材料,又参考了一些网络上的资料(主要是这篇,不过个人感觉仍然没有抓住重点),重新思考了一下,终于理解了这个定义所要传达的思想。

  先要介绍分散(shatter)的概念:对于一个给定集合S={x1, ... ,xd},如果一个假设类H能够实现集合S中所有元素的任意一种标记方式,则称H能够分散S。

  这样之后才有VC维的定义:H的VC维表示为VC(H) ,指能够被H分散的最大集合的大小。若H能分散任意大小的集合,那么VC(H)为无穷大。在《神经网络原理》中有另一种记号:对于二分总体F,其VC维写作VCdim(F)。

  通常定义之后,会用二维线性分类器举例说明为什么其VC维是3,而不能分散4个样本的集合,这里也就是容易产生困惑的地方。下面进行解释。

  对于三个样本点的情况,下面的S1所有的标记方式是可以使用线性分类器进行分类的,因此其VC维至少为3(图片来自于斯坦福机器学习公开课的materials,cs229-notes4.pdf):

    

  虽然存在下面这种情况的S2,其中一种标记方式无法用线性分类器分类(图片来自于斯坦福机器学习公开课的materials,cs229-notes4.pdf)

          

  但这种情况并不影响,这是因为,上一种的S1中,我们的H={二维线性分类器}可以实现其所有可能标签情况的分类,这和S2不能用H分散无关。

  而对于4个样本点的情况,我们的H不能实现其所有可能标签情况的分类(这是经过证明的,过程不详)如下图中某个S和其中一种标签分配情况:

  

        

  可见,H={二维线性分类器}的VC维是3。

  从这个解释过程可以看出,对于VC维定义理解的前提是先理解分散的定义。分散中的集合S是事先选定的,而VC维是能分散集合中基数(即这里的样本数)最大的。因此,当VC(H)=3时,也可能存在S',|S'|=3但不能被H分散;而对于任意事先给定的S",|S"|=4,H不能对其所有可能的标签分配方式进行分散。这里所谓“事先给定”可以看作其点在平面上位置已定,但所属类别未定(即可能是任意一种标签分配)

VC维含义的个人理解的更多相关文章

  1. VC维含义

    VC维含义的个人理解 有关于VC维可以在很多机器学习的理论中见到,它是一个重要的概念.在读<神经网络原理>的时候对一个实例不是很明白,通过这段时间观看斯坦福的机器学习公开课及相关补充材料, ...

  2. 【转载】VC维,结构风险最小化

    以下文章转载自http://blog.sina.com.cn/s/blog_7103b28a0102w9tr.html 如有侵权,请留言,立即删除. 1 VC维的描述和理解 给定一个集合S={x1,x ...

  3. 【转载】VC维的来龙去脉

    本文转载自 火光摇曳 原文链接:VC维的来龙去脉 目录: 说说历史 Hoeffding不等式 Connection to Learning 学习可行的两个核心条件 Effective Number o ...

  4. VC维的来龙去脉——转载

    VC维的来龙去脉——转载自“火光摇曳” 在研究VC维的过程中,发现一篇写的很不错的VC维的来龙去脉的文章,以此转载进行学习. 原文链接,有兴趣的可以参考原文进行研究学习 目录: 说说历史 Hoeffd ...

  5. VC维的来龙去脉(转)

    本文转自VC维的来龙去脉 本文为直接复制原文内容,建议阅读原文,原文排版更清晰,且原网站有很多有意思的文章. 阅读总结: 文章几乎为台大林老师网课“机器学习可行性”部分串联总结,是一个很好的总结. H ...

  6. svm、经验风险最小化、vc维

    原文:http://blog.csdn.net/keith0812/article/details/8901113 “支持向量机方法是建立在统计学习理论的VC 维理论和结构风险最小原理基础上” 结构化 ...

  7. VC维

    vc理论(Vapnik–Chervonenkis theory )是由 Vladimir Vapnik 和 Alexey Chervonenkis发明的.该理论试图从统计学的角度解释学习的过程.而VC ...

  8. Computer Science Theory for the Information Age-5: 学习理论——VC维的定义以及一些例子

    学习理论——VC维的定义以及一些例子 本文主要介绍一些学习理论上的东西.首先,我们得明确,从训练集上学习出来的分类器的最终目标是用于预测未知的样本,那么我们在训练的时候该用多少的样本才能使产生的分类器 ...

  9. VC维与DNN的Boundary

    原文链接:解读机器学习基础概念:VC维来去 作者:vincentyao 目录: 说说历史 Hoeffding不等式 Connection to Learning 学习可行的两个核心条件 Effecti ...

随机推荐

  1. 【Linux部署 · JDK】在linux系统安装jdk

    1,检查是否安装jdk   echo $JAVA_HOME 或者java -version   2,查看操作系统,很明显这是一个相当old的操作系统,i686是32位操作系统.   3,在oracle ...

  2. 源码编译安装bind

    author:JevonWei 版权声明:原创作品 编译bind 准备阶段: 下载bind软件包,然后传输到系统中 https://www.isc.org/downloads/ 安装开发包组 yum ...

  3. SQL Server锁类型

    SQL Server锁类型(SQL)收藏 1. HOLDLOCK: 在该表上保持共享锁,直到整个事务结束,而不是在语句执行完立即释放所添加的锁. 2. NOLOCK:不添加共享锁和排它锁,当这个选项生 ...

  4. 关于用VMware克隆linux系统后,无法联网找不到eth0网卡的问题

    当使用克隆后的虚拟机时发现系统中的网卡eth0没有了,使用ifconfig -a会发现只有eth1.因为系统是克隆过来的,原有的eth0以及ip地址都是原先网卡的,VMware发现已经被占用,就会创建 ...

  5. nginx.conf配置文件的简单说明

    #nginx 监听原理 先监听端口 --> 再配置域名 -->匹配到就访问local 否则 没有匹配到域名就默认访问第一个监听端口的local地址# vi nginx.conf user ...

  6. 第2阶段——编写uboot之编译测试以及改进(3)

    编译测试: 1.将写好的uboot复制到linux下面 2.make编译,然后将错误的地方修改,生成boot.bin (编译出错的解决方案:http://www.cnblogs.com/lifexy/ ...

  7. 201521123083《Java程序设计》第13周学习总结

    本次作业参考文件 正则表达式参考资料 1. 本周学习总结 以你喜欢的方式(思维导图.OneNote或其他)归纳总结多网络相关内容. 2. 书面作业 1. 网络基础 1.1 比较ping www.bai ...

  8. 201521123022 《Java程序设计》 第五周学习总结

    1. 本周学习总结 1.1 尝试使用思维导图总结有关多态与接口的知识点. 2. 书面作业 1.代码阅读:Child压缩包内源代码 1.1 com.parent包中Child.java文件能否编译通过? ...

  9. 201521123071 《JAVA程序设计》第十四周学习总结

    第14周作业-数据库 1. 本周学习总结 1.1 以你喜欢的方式(思维导图.Onenote或其他)归纳总结多数据库相关内容. 1.使用JDBC将Java程序与数据库连接 1.1注册驱动 Class.f ...

  10. 201521123039 《java程序设计》第九周学习总结

    1. 本周学习总结 2. 书面作业 本次PTA作业题集异常 常用异常 题目5-1 1.1 截图你的提交结果(出现学号) 1.2 自己以前编写的代码中经常出现什么异常.需要捕获吗(为什么)?应如何避免? ...