A Simple Problem with Integers

Time Limit: 5000MS   Memory Limit: 131072K
Total Submissions: 47174   Accepted: 13844
Case Time Limit: 2000MS

Description

You have N integers, A1, A2, ... , AN. You need to deal with two kinds of operations. One type of operation is to add some given number to each number in a given interval. The other is to ask for the sum of numbers in a given interval.

Input

The first line contains two numbers N and Q. 1 ≤ N,Q ≤ 100000. The second line contains N numbers, the initial values of A1, A2, ... , AN. -1000000000 ≤ Ai ≤ 1000000000. Each of the next Q lines represents an operation. "C a b c" means adding c to each of Aa, Aa+1, ... , Ab. -10000 ≤ c ≤ 10000. "Q a b" means querying the sum of Aa, Aa+1, ... , Ab.

Output

You need to answer all Q commands in order. One answer in a line.

Sample Input

10 5
1 2 3 4 5 6 7 8 9 10
Q 4 4
Q 1 10
Q 2 4
C 3 6 3
Q 2 4

Sample Output

4
55
9
15

Hint

The sums may exceed the range of 32-bit integers.
 
解法:
一个树状数组,需要区间更新,区间求和,本来树状数组是区间更新单点求值或单点更新区间求和的,这个它是根据一些公式实现的:
 首先,看更新操作update(s, t, d)把区间A[s]...A[t]都增加d,我们引入一个数组delta[i],表示

A[i]...A[n]的共同增量,n是数组的大小。那么update操作可以转化为:

1)令delta[s] = delta[s] + d,表示将A[s]...A[n]同时增加d,但这样A[t+1]...A[n]就多加了d,所以

2)再令delta[t+1] = delta[t+1] - d,表示将A[t+1]...A[n]同时减d

然后来看查询操作query(s, t),求A[s]...A[t]的区间和,转化为求前缀和,设sum[i] = A[1]+...+A[i],则

A[s]+...+A[t] = sum[t] - sum[s-1],

那么前缀和sum[x]又如何求呢?它由两部分组成,一是数组的原始和,二是该区间内的累计增量和, 把数组A的原始

值保存在数组org中,并且delta[i]对sum[x]的贡献值为delta[i]*(x+1-i),那么

sum[x] = org[1]+...+org[x] + delta[1]*x + delta[2]*(x-1) + delta[3]*(x-2)+...+delta[x]*1

= org[1]+...+org[x] + segma(delta[i]*(x+1-i))

= segma(org[i]) + (x+1)*segma(delta[i]) - segma(delta[i]*i),1 <= i <= x

=segma(org[i]-delta[i]*i)+(x+1)*delta[i], i<=1<=x   //by huicpc0207 修改  这里就可以转化为两个个数组

这其实就是三个数组org[i], delta[i]和delta[i]*i的前缀和,org[i]的前缀和保持不变,事先就可以求出来,delta[i]和

delta[i]*i的前缀和是不断变化的,可以用两个树状数组来维护。

 #include <iostream>
#include <algorithm>
#include <stdio.h>
#include <string.h>
#include <math.h>
using namespace std;
#define ll long long int
ll a[];//维护delta[]
ll a1[];//维护delta[]*i
ll b[];//本来的数组和
int n;
int lowbit(int x)
{
return x&(-x);
}
void update(ll *arry,int x,int d)
{
while(x<=n)
{
arry[x]+=d;
x+=lowbit(x);
}
}
ll fun(ll *arry,int x)
{
ll sum=;
while(x>)
{
sum+=arry[x];
x-=lowbit(x);
}
return sum;
}
int main()
{
//freopen("int.txt","r",stdin);
int k;
int x,i,y,z;
scanf("%d%d",&n,&k);
memset(b,,sizeof(b));
memset(a,,sizeof(a));
memset(a1,,sizeof(a1));
for(i=;i<=n;i++)
{
scanf("%d",&x);
b[i]+=b[i-]+x;
}
char c;
for(i=;i<k;i++)
{
c=getchar();
c=getchar();
if(c=='C')
{
scanf("%d%d%d",&x,&y,&z);
update(a,x,z);
update(a,y+,-z);
update(a1,x,z*x);
update(a1,y+,-z*(y+));
}
else
{
scanf("%d%d",&x,&y);
ll sum=-b[x-]-x*fun(a,x-)+fun(a1,x-);
sum+=b[y]+(y+)*fun(a,y)-fun(a1,y);
printf("%I64d\n",sum);
}
}
}

poj3468树状数组的区间更新,区间求和的更多相关文章

  1. POJ3468——树状数组支持两个区间操作

    题目:http://poj.org/problem?id=3468 推断过程可自己查,得式子:fixsum(x) = (x+1) * ∑(i=1,x)fi - ∑(i=1,x)i*fi; 其中 f 是 ...

  2. nyoj 123 士兵杀敌(四) 树状数组【单点查询+区间修改】

    士兵杀敌(四) 时间限制:2000 ms  |  内存限制:65535 KB 难度:5   描述 南将军麾下有百万精兵,现已知共有M个士兵,编号为1~M,每次有任务的时候,总会有一批编号连在一起人请战 ...

  3. 【ZOJ2112】【整体二分+树状数组】带修改区间第k大

    The Company Dynamic Rankings has developed a new kind of computer that is no longer satisfied with t ...

  4. HDU 1166 敌兵布阵 树状数组小结(更新)

    树状数组(Binary Indexed Tree(BIT), Fenwick Tree) 是一个查询和修改复杂度都为log(n)的数据结构.主要用于查询任意两位之间的所有 元素之和,但是每次只能修改一 ...

  5. POJ3468(树状数组区间维护)

    A Simple Problem with Integers Time Limit: 5000MS   Memory Limit: 131072K Total Submissions: 89818   ...

  6. Turing Tree HDU - 3333 (树状数组,离线求区间元素种类数)

    After inventing Turing Tree, 3xian always felt boring when solving problems about intervals, because ...

  7. HDU 4638 Group (2013多校4 1007 离线处理+树状数组)

    Group Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submi ...

  8. hdu3966 树链剖分点权模板+线段树区间更新/树状数组区间更新单点查询

    点权树的模板题,另外发现树状数组也是可以区间更新的.. 注意在对链进行操作时方向不要搞错 线段树版本 #include<bits/stdc++.h> using namespace std ...

  9. 牛客网 暑期ACM多校训练营(第二场)J.farm-STL(vector)+二维树状数组区间更新、单点查询 or 大暴力?

    开心.jpg J.farm 先解释一下题意,题意就是一个n*m的矩形区域,每个点代表一个植物,然后不同的植物对应不同的适合的肥料k,如果植物被撒上不适合的肥料就会死掉.然后题目将每个点适合的肥料种类( ...

随机推荐

  1. switch case异常处理机制

    public class T3{ public static void main(String[] args) { try{ String kc=""; System.out.pr ...

  2. 201521123017 《Java程序设计》第6周学习总结

    1. 本周学习总结 <> 2. 书面作业 Q1.clone方法 1.1 Object对象中的clone方法是被protected修饰,在自定义的类中覆盖clone方法时需要注意什么? 1. ...

  3. 201521123059 《Java程序设计》第三周学习总结

    1. 本周学习总结 2. 书面作业 1.代码阅读 public class Test1 { private int i = 1;//这行不能修改 private static int j = 2; p ...

  4. 201521123076 《Java程序设计》第13周学习总结

    1. 本周学习总结 以你喜欢的方式(思维导图.OneNote或其他)归纳总结多网络相关内容. 2. 书面作业 1. 网络基础 1.1 比较ping www.baidu.com与ping cec.jmu ...

  5. 201521123077 《Java程序设计》第11周学习总结

    1. 本周学习总结 1.1 以你喜欢的方式(思维导图或其他)归纳总结异常与多线程相关内容. 线程的同步(加锁防止多个线程同时访问) synchronized关键字修饰 可以使用于方法前或者方法内做同步 ...

  6. 201521123033《Java程序设计》第10周学习总结

    1. 本周学习总结 1.1 以你喜欢的方式(思维导图或其他)归纳总结异常与多线程相关内容. answer: 2. 书面作业 本次PTA作业题集异常.多线程 1.finally 题目4-2 1.1 截图 ...

  7. Java课程设计 购物车系统(个人博客) 201521123052 蓝锦明

    1. 团队课程设计博客链接 课程设计团队博客 2. 个人负责模块或任务说明 (1)制作图形菜单引导界面 (2)定义各获取和输出类函数 3. 自己的代码提交记录截图 4. 自己负责模块或任务详细说明 i ...

  8. 201521123060 《Java程序设计》第14周学习总结

    1.本周学习总结 1.1以你喜欢的方式(思维导图或其他)归纳总结多数据库相关内容. 2.书面作业 1.MySQL数据库基本操作 1.1建立数据库,将自己的姓名.学号作为一条记录插入.(截图,需出现自己 ...

  9. 今天的第一个程序-南阳acm输入三个数排序

    #include<stdio.h>main(){    int a,b,c,t;    scanf("%d%d%d",&a,&b,&c);    ...

  10. video标签

    Video标签的使用 Video标签含有src.poster.preload.autoplay.loop.controls.width.height等几个属性, 以及一个内部使用的标签<sour ...