【JDK1.8】JDK1.8集合源码阅读——LinkedHashMap
一、前言
在上一篇随笔中,我们分析了HashMap的源码,里面涉及到了3个钩子函数,用来预设给子类——LinkedHashMap的调用,所以趁热打铁,今天我们来一起看一下它的源码吧。
二、LinkedHashMap的结构与继承关系
### 2.1 LinkedHashMap的数据结构
可以从上图中看到,LinkedHashMap数据结构相比较于HashMap来说,添加了双向指针,分别指向前一个节点——before和后一个节点——after,从而将所有的节点已链表的形式串联一起来,从名字上来看LinkedHashMap与HashMap有一定的联系,实际上也确实是这样,LinkedHashMap继承了HashMap,重写了HashMap的一部分方法,从而加入了链表的实现。让我们来看一下它们的继承关系。
2.2 LinkedHashMap的继承关系
2.2.1 Entry的继承关系
Entry作为基本的节点,可以看到LinkedHashMap的Entry继承自HashMap的Node,在其基础上加上了before和after两个指针,而TreeNode作为HashMap和LinkedHashMap的树节点,继承自LinkedHahsMap的Entry,并且加上了树节点的相关指针,另外提一点:before和parent的两个概念是不一样的,before是相对于链表来的,parent是相对于树操作来的,所以要分两个。
2.2.2 Iterator的继承关系
LinkedHashMap的迭代器为遍历节点提供了自己的实现——LinkedHashIterator,对于Key、Value、Entry的3个迭代器,都继承自它。而且内部采用的遍历方式就是在前面提到的Entry里加的新的指向下一个节点的指针after,后面我们将具体看它的代码实现。
三、LinkedHashMap源码解析
本节我们将结合HashMap的部分源码一起分析一下LinkedHashMap。
3.1 LinkedHashMap的继承关系
LinekdHashMap的继承关系前面已经说到了,不过按照习惯还是先放上去,凑一下字数 :)
public class LinkedHashMap<K,V> extends HashMap<K,V> implements Map<K,V>
这里没什么好说的,继承自HashMap,实现了Map接口
3.2 LinkedHashMap的成员变量
private static final long serialVersionUID = 3801124242820219131L;
// 用于指向双向链表的头部
transient LinkedHashMap.Entry<K,V> head;
//用于指向双向链表的尾部
transient LinkedHashMap.Entry<K,V> tail;
/**
* 用来指定LinkedHashMap的迭代顺序,
* true则表示按照基于访问的顺序来排列,意思就是最近使用的entry,放在链表的最末尾
* false则表示按照插入顺序来
*/
final boolean accessOrder;
注意:accessOrder
的final关键字,说明我们要在构造方法里给它初始化。
至于Entry的数据结构在第二节的图里面有了,这里就不重复了哈。
3.3 LinkedHashMap的构造方法
跟HashMap类似的构造方法这里就不一一赘述了,里面唯一的区别就是添加了前面提到的accessOrder,默认赋值为false——按照插入顺序来排列,这里主要说明一下不同的构造方法。
//多了一个 accessOrder的参数,用来指定按照LRU排列方式还是顺序插入的排序方式
public LinkedHashMap(int initialCapacity,
float loadFactor,
boolean accessOrder) {
super(initialCapacity, loadFactor);
this.accessOrder = accessOrder;
}
3.4 LinkedHashMap的get()方法
可能会有园友好奇,LinkedHashMap是怎么加上双向链表的呢,我们先来看一下get()
方法
public V get(Object key) {
Node<K,V> e;
//调用HashMap的getNode的方法,详见上一篇HashMap源码解析
if ((e = getNode(hash(key), key)) == null)
return null;
//在取值后对参数accessOrder进行判断,如果为true,执行afterNodeAccess
if (accessOrder)
afterNodeAccess(e);
return e.value;
}
从上面的代码可以看到,LinkedHashMap的get方法,调用HashMap的getNode方法后,对accessOrder的值进行了判断,我们之前提到:
accessOrder为true则表示按照基于访问的顺序来排列,意思就是最近使用的entry,放在链表的最末尾
由此可见,afterNodeAccess(e)
就是基于访问的顺序排列的关键,让我们来看一下它的代码:
//此函数执行的效果就是将最近使用的Node,放在链表的最末尾
void afterNodeAccess(Node<K,V> e) {
LinkedHashMap.Entry<K,V> last;
//仅当按照LRU原则且e不在最末尾,才执行修改链表,将e移到链表最末尾的操作
if (accessOrder && (last = tail) != e) {
//将e赋值临时节点p, b是e的前一个节点, a是e的后一个节点
LinkedHashMap.Entry<K,V> p =
(LinkedHashMap.Entry<K,V>)e, b = p.before, a = p.after;
//设置p的后一个节点为null,因为执行后p在链表末尾,after肯定为null
p.after = null;
//p前一个节点不存在,情况一
if (b == null) // ①
head = a;
else
b.after = a;
if (a != null)
a.before = b;
//p的后一个节点不存在,情况二
else // ②
last = b;
//情况三
if (last == null) // ③
head = p;
//正常情况,将p设置为尾节点的准备工作,p的前一个节点为原先的last,last的after为p
else {
p.before = last;
last.after = p;
}
//将p设置为将p设置为尾节点
tail = p;
// 修改计数器+1
++modCount;
}
}
标注的情况如下图所示(特别说明一下,这里是显示链表的修改后指针的情况,实际上在桶里面的位置是不变的,只是前后的指针指向的对象变了):
下面来简单说明一下:
正常情况下:查询的p在链表中间,那么将p设置到末尾后,它原先的前节点b和后节点a就变成了前后节点。
情况一:p为头部,前一个节点b不存在,那么考虑到p要放到最后面,则设置p的后一个节点a为head
情况二:p为尾部,后一个节点a不存在,那么考虑到统一操作,设置last为b
情况三:p为链表里的第一个节点,head=p
3.5 LinkedHashMap的put()方法
接下来,让我们来看一下LinkedHashMap是怎么插入Entry的:LinkedHashMap的put方法调用的还是HashMap里的put,不同的是重写了里面的部分方法,一起来看一下:
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
...
tab[i] = newNode(hash, key, value, null);
...
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
...
if ((e = p.next) == null) {
p.next = newNode(hash, key, value, null);
...
afterNodeAccess(e);
...
afterNodeInsertion(evict);
return null;
}
由于在上一章分析过了put方法,这里笔者就省略了部分代码,LinkedHashMap将其中newNode
方法以及之前设置下的钩子方法afterNodeAccess
和afterNodeInsertion
进行了重写,从而实现了加入链表的目的。一起来看一下:
Node<K,V> newNode(int hash, K key, V value, Node<K,V> e) {
//秘密就在于 new的是自己的Entry类,然后调用了linkedNodeLast
LinkedHashMap.Entry<K,V> p =
new LinkedHashMap.Entry<K,V>(hash, key, value, e);
linkNodeLast(p);
return p;
}
//顾名思义就是把新加的节点放在链表的最后面
private void linkNodeLast(LinkedHashMap.Entry<K,V> p) {
//将tail给临时变量last
LinkedHashMap.Entry<K,V> last = tail;
//把new的Entry给tail
tail = p;
//若没有last,说明p是第一个节点,head=p
if (last == null)
head = p;
//否则就做准备工作,你懂的 ( ̄▽ ̄)"
else {
p.before = last;
last.after = p;
}
}
//这里笔者也把TreeNode的重写也加了进来,因为putTreeVal里有调用了这个
TreeNode<K,V> newTreeNode(int hash, K key, V value, Node<K,V> next) {
TreeNode<K,V> p = new TreeNode<K,V>(hash, key, value, next);
linkNodeLast(p);
return p;
}
//插入后把最老的Entry删除,不过removeEldestEntry总是返回false,所以不会删除,估计又是一个钩子方法给子类用的
void afterNodeInsertion(boolean evict) {
LinkedHashMap.Entry<K,V> first;
if (evict && (first = head) != null && removeEldestEntry(first)) {
K key = first.key;
removeNode(hash(key), key, null, false, true);
}
}
protected boolean removeEldestEntry(Map.Entry<K,V> eldest) {
return false;
}
总结:设计者灵活的运用了Override,以及设置的钩子方法,实现了双向链表。
3.6 LinkedHashMap的remove()
上一章我们提到过remove里面设计者也设置了一个钩子方法:
final Node<K,V> removeNode(int hash, Object key, Object value,
boolean matchValue, boolean movable) {
...
//node即是要删除的节点
afterNodeRemoval(node);
...
}
一起来看一下这个方法干了什么:
void afterNodeRemoval(Node<K,V> e) {
//与afterNodeAccess一样,记录e的前后节点b,a
LinkedHashMap.Entry<K,V> p =
(LinkedHashMap.Entry<K,V>)e, b = p.before, a = p.after;
//p已删除,前后指针都设置为null,便于GC回收
p.before = p.after = null;
//与afterNodeAccess一样类似,一顿判断,然后b,a互为前后节点
if (b == null)
head = a;
else
b.after = a;
if (a == null)
tail = b;
else
a.before = b;
}
remove里的相对简单,顺带着简单提一提。
3.7 LinkedHashMap的迭代器
这一节,让我们来看一下LinkedHashMap的最基础的迭代器——LinkedHashIterator
abstract class LinkedHashIterator {
//记录下一个Entry
LinkedHashMap.Entry<K,V> next;
//记录当前的Entry
LinkedHashMap.Entry<K,V> current;
//记录是否发生了迭代过程中的修改
int expectedModCount;
LinkedHashIterator() {
//初始化的时候把head给next
next = head;
expectedModCount = modCount;
current = null;
}
public final boolean hasNext() {
return next != null;
}
//这里采用的是链表方式的遍历方式,有兴趣的园友可以去上一章看看HashMap的遍历方式
final LinkedHashMap.Entry<K,V> nextNode() {
LinkedHashMap.Entry<K,V> e = next;
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
if (e == null)
throw new NoSuchElementException();
//记录当前的Entry
current = e;
//直接拿after给next
next = e.after;
return e;
}
public final void remove() {
Node<K,V> p = current;
if (p == null)
throw new IllegalStateException();
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
current = null;
K key = p.key;
removeNode(hash(key), key, null, false, false);
expectedModCount = modCount;
}
}
LinkedHashMap遍历的方式使链表,顺序访问的话速度应该会更快一些。
四、总结
在阅读分析了HashMap的基础上,看LinkedHashMap会简单很多,觉得有收获的园友可以点一下推荐,另外有解读不对的地方可以留言指正,最后谢谢各位园友观看,与大家共同进步!
【JDK1.8】JDK1.8集合源码阅读——LinkedHashMap的更多相关文章
- 【JDK1.8】Java 8源码阅读汇总
一.前言 万丈高楼平地起,相信要想学好java,仅仅掌握基础的语法是远远不够的,从今天起,笔者将和园友们一起阅读jdk1.8的源码,并将阅读重点放在常见的诸如collection集合以及concu ...
- 【JDK1.8】JDK1.8集合源码阅读——IdentityHashMap
一.前言 今天我们来看一下本次集合源码阅读里的最后一个Map--IdentityHashMap.这个Map之所以放在最后是因为它用到的情况最少,也相较于其他的map来说比较特殊.就笔者来说,到目前为止 ...
- java1.7集合源码阅读: Stack
Stack类也是List接口的一种实现,也是一个有着非常长历史的实现,从jdk1.0开始就有了这个实现. Stack是一种基于后进先出队列的实现(last-in-first-out (LIFO)),实 ...
- java1.7集合源码阅读: Vector
Vector是List接口的另一实现,有非常长的历史了,从jdk1.0开始就有Vector了,先于ArrayList出现,与ArrayList的最大区别是:Vector 是线程安全的,简单浏览一下Ve ...
- 【JDK1.8】JDK1.8集合源码阅读——总章
一.前言 今天开始阅读jdk1.8的集合部分,平时在写项目的时候,用到的最多的部分可能就是Java的集合框架,通过阅读集合框架源码,了解其内部的数据结构实现,能够深入理解各个集合的性能特性,并且能够帮 ...
- 【JDK1.8】JDK1.8集合源码阅读——HashMap
一.前言 笔者之前看过一篇关于jdk1.8的HashMap源码分析,作者对里面的解读很到位,将代码里关键的地方都说了一遍,值得推荐.笔者也会顺着他的顺序来阅读一遍,除了基础的方法外,添加了其他补充内容 ...
- 【JDK1.8】JDK1.8集合源码阅读——ArrayList
一.前言 在前面几篇,我们已经学习了常见了Map,下面开始阅读实现Collection接口的常见的实现类.在有了之前源码的铺垫之后,我们后面的阅读之路将会变得简单很多,因为很多Collection的结 ...
- 【JDK1.8】JDK1.8集合源码阅读——LinkedList
一.前言 这次我们来看一下常见的List中的第二个--LinkedList,在前面分析ArrayList的时候,我们提到,LinkedList是链表的结构,其实它跟我们在分析map的时候讲到的Link ...
- Java集合源码阅读之HashMap
基于jdk1.8的HashMap源码分析. 引用于:http://blog.stormma.me/2017/05/31/Java%E9%9B%86%E5%90%88%E6%BA%90%E7%A0%81 ...
随机推荐
- PHP数组运算符
PHP数组预算符有==(等于),===(恒等于),!=(不等于),<>(不等于),+(联合): 注意:没有-(减号)运算符: $a=array("a"=>&quo ...
- java GUI编程二
java基础学习总结--GUI编程(二) 一.事件监听 测试代码一: 1 package cn.javastudy.summary; 2 3 import java.awt.*; 4 import j ...
- Qt全局宏和变量
1. Qt 全局宏定义 Qt版本号: QT_VERSION : (major << 16) + (minor << 8) + patch 检测版本号: QT_VERSION ...
- Canal 同步异常分析:Could not find first log file name in binary log index file
文章首发于[博客园-陈树义],点击跳转到原文Canal同步异常分析:Could not find first log file name in binary log index file. 公司搜索相 ...
- 应试记录2(没有转载标注,NOIP2016复赛过后自动删除)
#include<stdio.h> #include<string.h> int main() { ]; memset(a, , sizeof(a)); ;i<=;i++ ...
- Python自学笔记-paramiko模块(Mr serven)
文章出处:http://www.cnblogs.com/wupeiqi/articles/5095821.html SSHClient 用于连接远程服务器并执行基本命令 基于用户名密码连接: #!/u ...
- Python系列之文件操作、冒泡算法、装饰器、及递归
文件处理 python对文件进行读写操作的方法与具体步骤,包括打开文件.读取内容.写入文件.文件中的内容定位.及关闭文件释放资源等 open().file(),这个两函数提供了初始化输入\输出(I\O ...
- 纠错:基于FPGA串口发送彩色图片数据至VGA显示
今天这篇文章是要修改之前的一个错误,前面我写过一篇基于FPGA的串口发送图片数据至VGA显示的文章,最后是显示成功了,但是显示的效果图,看起来确实灰度图,当时我默认我使用的MATLAB代码将图片数据转 ...
- PL/SQL 三个小例子
/* SQL语句 员工集合:select to_char(hiredate,'yyyy') from emp --> 光标 --> 循环--> 退出条件:notfound 变量 co ...
- 实验:实现https
实现https 环境 1.三台主机分别为A,B,C. 2.A主机设置为CA和DNS服务器,ip为192.168.213.129 3.B主机为client,ip为192.168.213.253 4.C主 ...