BZOJ3930: [CQOI2015]选数
题目:http://www.lydsy.com/JudgeOnline/problem.php?id=3930
容斥原理。
令l=(L-1)/k,r=R/k,这样找k的倍数就相当于找1的倍数。
设F[i]为gcd为i的选数情况数,有F[i]=(r/i-l/i)^n-F[i*2]-F[i*3]-......-(r/i-l/i) 这个是除掉全部都一样的情况。
然后如果k在[L,R]之内的话答案要加一,也就是全部都是k的这种情况是可以的。
#include<cstring>
#include<iostream>
#include<cstdio>
#include<map>
#include<cmath>
#include<algorithm>
#define rep(i,l,r) for (int i=l;i<=r;i++)
#define down(i,l,r) for (int i=l;i>=r;i--)
#define clr(x,y) memset(x,y,sizeof(x))
#define maxn 500500
#define inf 2000000000
#define mm 1000000007
using namespace std;
int n,k,l,r,ok,ans,m,L,R,mx,t;
int f[maxn];
int read(){
int x=,f=; char ch=getchar();
while (!isdigit(ch)) {if (ch=='-') f=-; ch=getchar();}
while (isdigit(ch)) {x=x*+ch-''; ch=getchar();}
return x*f;
}
int Pow(int x,int y){
int ans=;
while (y){
if (y&) ans=1LL*ans*x%mm;
x=1LL*x*x%mm;
y>>=;
}
return ans;
}
int main(){
n=read(); k=read(); L=read(); R=read();
if (L<=k&&k<=R) ans++;
L=(L-)/k; R=R/k;
mx=R-L;
down(i,mx,){
l=L/i; r=R/i; t=r-l;
f[i]=(Pow(t,n)-t+mm)%mm;
for (int j=*i;j<=mx;j+=i) f[i]=(f[i]-f[j]+mm)%mm;
}
printf("%d\n",f[]+ans);
return ;
}
BZOJ3930: [CQOI2015]选数的更多相关文章
- bzoj3930[CQOI2015]选数 容斥原理
3930: [CQOI2015]选数 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 1383 Solved: 669[Submit][Status] ...
- BZOJ3930 [CQOI2015]选数 【容斥】
题目 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公约数,以便进一步研 ...
- BZOJ3930 [CQOI2015]选数【莫比乌斯反演】
Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公 ...
- 【BZOJ3930】[CQOI2015]选数 莫比乌斯反演
[BZOJ3930][CQOI2015]选数 Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律 ...
- BZOJ 3930: [CQOI2015]选数 递推
3930: [CQOI2015]选数 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/pro ...
- 【BZOJ3930】选数(莫比乌斯反演,杜教筛)
[BZOJ3930]选数(莫比乌斯反演,杜教筛) 题面 给定\(n,K,L,R\) 问从\(L-R\)中选出\(n\)个数,使得他们\(gcd=K\)的方案数 题解 这样想,既然\(gcd=K\),首 ...
- 【BZOJ3930】选数
[BZOJ3930]选数 Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选 ...
- 洛谷 [CQOI2015]选数 解题报告
[CQOI2015]选数 题目描述 我们知道,从区间\([L,H]\)(\(L\)和\(H\)为整数)中选取\(N\)个整数,总共有\((H-L+1)^N\)种方案. 小\(z\)很好奇这样选出的数的 ...
- [CQOI2015]选数(莫比乌斯反演,杜教筛)
[CQOI2015]选数(luogu) Description 题目描述 我们知道,从区间 [L,H](L 和 H 为整数)中选取 N 个整数,总共有 (H-L+1)^N 种方案. 小 z 很好奇这样 ...
随机推荐
- Python3 将txt数据转换成列表,进行排序,筛选
Python 程序员需要知道的 30 个技巧 首先是数据: 将上边的四个数据分别写在新建的txt文件中 1.将txt数据转为列表 with open('james.txt') as jaf: data ...
- iOS 通知的变化ios9-10,新功能展示
二.新功能展示 1 使用 /iOS通知新功能玩法 2. 全面 iOS10里的通知与推送详情 一.变化 四.Notification(通知) 自从Notification被引入之后,苹果就不断的 ...
- iOS开发--数据库管理CoreData的使用
CoreData是iOS5后,苹果提供的原生的用于对象化管理数据并且持久化的框架.CoreData本质上是将底层数据库封装成对象进行管理.但数据库实际上只是CoreData的一个功能,并不是全部功能. ...
- SAP RFC介绍:关于sRFC,aRFC,tRFC,qRFC和bgRFC
大概八月份的时候做过一个有关两个SAP系统的财务集成的项目,使用到了RFC(Remote Function Call)技术.因为之前有着医疗-CRM相关接口开发的经验,以为自己对RFC很熟悉了,做起来 ...
- SpringMVC配置双数据源,一个java项目同时连接两个数据库
数据源在配置文件中的配置 请点击---> java架构师项目实战,高并发集群分布式,大数据高可用,视频教程 <pre name="code" class=" ...
- Lucene分词停用词库stopwords
! " $ % & ' ( ) * + , - -- . .. ... ...... ................... ./ .一 .数 .日 / // 0 1 2 3 4 5 ...
- Cleaner, more elegant, and wrong(翻译)
Cleaner,more elegant,and wrong 整洁,更优雅,但是错的 并不是因为你看不到错误的产生路径就意味着它不存在. 下面是C#编程书中的一个片段,摘自关于异常处理的章节. try ...
- Netty之ProtoBuf(六)
Protocol Buffer的基本使用(六) 一.简介 Protocol Buffer(简称ProtoBuf)是google的一个语言中立,平台中立,可扩展的对结构化的数据进行序列化的一种机制,和X ...
- SpringMVC RequestMapping注解
1.@RequestMapping 除了修饰方法,还可以修饰类 2.类定义处:提供初步的请求映射信息.相对于WEB应用的根目录 方法处:提供进一步细分映射信息 相对于类定义处的URL.若类定义处未 ...
- EditTable可编辑的表格
EditTable可编辑的表格 EditTable基于tabel布局的表格,表格内容单击可以编辑,编辑完毕即可显示新的内容: ESC按键可以撤销编辑,返回原有内容. 点击"添加& ...