Description

As you probably know, Anton goes to school. One of the school subjects that Anton studies is Bracketology. On the Bracketology lessons students usually learn different sequences that consist of round brackets (characters “(” and “)” (without quotes)).

On the last lesson Anton learned about the regular simple bracket sequences (RSBS). A bracket sequence s of length n is an RSBS if the following conditions are met:

It is not empty (that is n ≠ 0).

The length of the sequence is even.

First charactes of the sequence are equal to “(“.

Last charactes of the sequence are equal to “)”.

For example, the sequence “((()))” is an RSBS but the sequences “((())” and “(()())” are not RSBS.

Elena Ivanovna, Anton’s teacher, gave him the following task as a homework. Given a bracket sequence s. Find the number of its distinct subsequences such that they are RSBS. Note that a subsequence of s is a string that can be obtained from s by deleting some of its elements. Two subsequences are considered distinct if distinct sets of positions are deleted.

Because the answer can be very big and Anton’s teacher doesn’t like big numbers, she asks Anton to find the answer modulo 109 + 7.

Anton thought of this task for a very long time, but he still doesn’t know how to solve it. Help Anton to solve this task and write a program that finds the answer for it!

Input

The only line of the input contains a string s — the bracket sequence given in Anton’s homework. The string consists only of characters “(” and “)” (without quotes). It’s guaranteed that the string is not empty and its length doesn’t exceed 200 000.

Output

Output one number — the answer for the task modulo 109 + 7.

Examples

input
)(()()
output
6 input
()()()
output
7 input
)))
output
0

Note

In the first sample the following subsequences are possible:

If we delete characters at the positions 1 and 5 (numbering starts with one), we will get the subsequence “(())”.

If we delete characters at the positions 1, 2, 3 and 4, we will get the subsequence “()”.

If we delete characters at the positions 1, 2, 4 and 5, we will get the subsequence “()”.

If we delete characters at the positions 1, 2, 5 and 6, we will get the subsequence “()”.

If we delete characters at the positions 1, 3, 4 and 5, we will get the subsequence “()”.

If we delete characters at the positions 1, 3, 5 and 6, we will get the subsequence “()”.

The rest of the subsequnces are not RSBS. So we got 6 distinct subsequences that are RSBS, so the answer is 6.

Key

题意:给一大串前后括号组成的字符串,长度为n,从中任取若干括号、按原顺序排列,要求取出的括号前一半都是“(”,后一半都是”)“,问有多少种组合(即组成如((((())))))。如)(()() (没个括号分别编号1~6),有2 42 63 43 65 62 3 4 6 6种。

事后看了题解才AC。很容易想到的是,读取时只存储每一个后括号之前一共有多少个前括号,例如)(()(),有三个后括号,只需存储0 2 3即可(对该数组命名为sum,并假设一共m个后括号)。然后遍历这个sum数组:对于第i个后括号,左侧有sum[i]个前括号,右侧有m-i个后括号(方便起见令ai=sum[i]bi=m-i),以当前后括号为第一个符合符合“((((()))))”的后括号,则当前后括号左侧的后括号都不可能满足,当前后括号右侧的前括号也不满足。则“以当前后括号为第一个符合的后括号”一共有

C1ai∗C0bi+C2ai∗C1bi+C3ai∗C2bi+...+Cmin(ai,bi+1)ai∗Cmin(ai,bi+1)−1bi=∑i=1min(ai,bi+1)Ciai∗Ci−1bi=∑i=1min(ai,bi+1)Cai−iai∗Ci−1bi=∑i=0min(ai−1,bi)Cai−i−1ai∗Cibi

注意a指的是当前后括号左侧的前括号个数,b为当前的后括号右侧后括号个数,故b不包括当前后括号。

最后根据范德蒙恒等式推倒:

若min(ai−1,bi)=ai−1:

∑i=0min(ai−1,bi)Cai−i−1ai∗Cibi=∑i=0ai−1Cai−i−1ai∗Cibi=Cai−1ai+bi

若min(ai,bi+1)=bi+1:

∑i=1min(ai,bi+1)Ciai∗Ci−1bi=∑i=1bi+1Ciai∗Cbi+1−ibi=Cbi+1ai+bi

合起来还是Cmin(ai,bi)ai+bi

那么最终要做的就是把m个组合数求和。因而求组合数也是个难点。这里直接盗用了上面链接的大神的模板。自己写了个求组合数的博客。这里还是预先打表了,这样快很多。

Code

#include<cstdio>
#include<iostream>
#include<string>
#include<algorithm>
#define MX 200005
using namespace std;
typedef long long LL; const int p = 1e9 + 7;
int sum[MX] = { 0 }; // store the sum of all the '(' before the last ')'
LL ans = 0; LL fac[200005], fac_exp[200005];
LL ModExp(LL a, LL b, LL p)
{
LL ans = 1;
while (b)
{
if (b & 1)
ans = ans*a%p;
a = a*a%p;
b >>= 1;
}
return ans;
}
LL C(int n, int m)
{
return fac[n] % p * fac_exp[n - m] % p * fac_exp[m] % p;
} int main()
{
fac[0] = fac_exp[0] = 1;
for (int i = 1;i <= 200000;i++)
{
fac[i] = (fac[i - 1] * i) % p;
fac_exp[i] = ModExp(fac[i], p - 2, p);
} //freopen("in.txt", "r", stdin);
string s;
getline(cin, s);
int num_left = 0, num_right = 0;
for (char c : s) {
if (c == '(') ++num_left;
else {
sum[num_right + 1] = sum[num_right] + num_left;
++num_right;
num_left = 0;
}
}
for (int i = 1;i <= num_right;++i) {
int right = num_right - i + 1;
int left = sum[i];
ans += C(right - 1 + left, right);
}
cout << (int)(ans%p);
return 0;
}

[刷题]Codeforces 785D - Anton and School - 2的更多相关文章

  1. [刷题]Codeforces 794C - Naming Company

    http://codeforces.com/contest/794/problem/C Description Oleg the client and Igor the analyst are goo ...

  2. Codeforces 785D Anton and School - 2 (组合数相关公式+逆元)

    D. Anton and School - 2 time limit per test 2 seconds memory limit per test 256 megabytes input stan ...

  3. [刷题codeforces]650A.637A

    650A Watchmen 637A Voting for Photos 点击查看原题 650A又是一个排序去重的问题,一定要注意数据范围用long long ,而且在写计算组合函数的时候注意也要用l ...

  4. [刷题codeforces]651B/651A

    651B Beautiful Paintings 651A Joysticks 点击可查看原题 651B是一个排序题,只不过多了一步去重然后记录个数.每次筛一层,直到全为0.从这个题里学到一个正确姿势 ...

  5. [刷题]Codeforces 786A - Berzerk

    http://codeforces.com/problemset/problem/786/A Description Rick and Morty are playing their own vers ...

  6. [刷题]Codeforces 746G - New Roads

    Description There are n cities in Berland, each of them has a unique id - an integer from 1 to n, th ...

  7. Codeforces 785D - Anton and School - 2 - [范德蒙德恒等式][快速幂+逆元]

    题目链接:https://codeforces.com/problemset/problem/785/D 题解: 首先很好想的,如果我们预处理出每个 "(" 的左边还有 $x$ 个 ...

  8. CF刷题-Codeforces Round #481-G. Petya's Exams

    题目链接:https://codeforces.com/contest/978/problem/G 题目大意:n天m门考试,每门考试给定三个条件,分别为:1.可以开始复习的日期.2.考试日期.3.必须 ...

  9. CF刷题-Codeforces Round #481-F. Mentors

    题目链接:https://codeforces.com/contest/978/problem/F 题目大意: n个程序员,k对仇家,每个程序员有一个能力值,当甲程序员的能力值绝对大于乙程序员的能力值 ...

随机推荐

  1. Grunt usemin

    yeoman/grunt-usemin 用来将 HTML 文件中(或者 templates/views)中没有优化的 script 和 stylesheets 替换为优化过的版本. usemin 暴露 ...

  2. React文档翻译系列(三)JSX简介

    # React文档翻译系列(三)JSX简介 先来看一下下面的变量声明: ``` const element = Hello world! ``` 这种有趣的标签语法既不是字符串也不是HTML. 这种形 ...

  3. 【C#】组件分享:FormDragger-窗体拖拽器

    适用:.net2.0+ winform项目 介绍: 类似QQ.迅雷等讲究UI体验的软件,都支持在窗口内多处地方拖动窗口,而不必老实巴交的去顶部标题栏拖,这个组件就是让winform也能这样随性拖拽,随 ...

  4. 老李推荐: 第1章1节《MonkeyRunner源码剖析》概述:前言

    老李推荐: 第1章1节<MonkeyRunner源码剖析>概述:前言   前言 相信大家做过安卓移动平台UI自动化开发的必然会用过,至少听过MonkeyRunner这个名字.MonkeyR ...

  5. Hibernate(一)之Hibernate入门

    一.Hibernate入门 ssh框架体系结构 1.1.ORM框架 Hibernate是一个数据持久化层的ORM框架. Object:对象,java对象,此处特指JavaBean Relational ...

  6. mysql中 decimal、numeric数据类型

    例 如:salary DECIMAL(5,2) 在这个例子中,5 (精度(precision)) 代表重要的十进制数字的数目,2 (数据范围(scale)) 代表在小数点后的数字位数.在这种情况下,因 ...

  7. jmeter JDBC 连接数据库

    1.添加JDBC Connection Configuration 2.添加JDBC Request 3.添加查看结果树 4. 设置下列参数:Database URL:jdbc:mysql://hos ...

  8. 给指针malloc分配空间后就等于数组吗?【转】

    首先回答你的问题:严格的说不等于数组,但是可以认为它是个数组一样的使用而不产生任何问题. 不过既然这样,那它应该算是个数组吧.所以,一般我们都用“动态数组”这种名字来称呼这种东西. 要讲清楚这个东西, ...

  9. Xamarin XAML语言教程使用Xamarin Studio创建XAML(二)

    Xamarin XAML语言教程使用Xamarin Studio创建XAML(二) 使用Xamarin Studio创建XAML Xamarin Studio和Visual Studio创建XAML文 ...

  10. oracle分区表的建立方法(包含已经存在的表要分区)分享,非常好

    非原创 Oracle提供了分区技术以支持VLDB(Very Large DataBase).分区表通过对分区列的判断,把分区列不同的记录,放到不同的分区中.分区完全对应用透明. Oracle的分区表可 ...