Description

As you probably know, Anton goes to school. One of the school subjects that Anton studies is Bracketology. On the Bracketology lessons students usually learn different sequences that consist of round brackets (characters “(” and “)” (without quotes)).

On the last lesson Anton learned about the regular simple bracket sequences (RSBS). A bracket sequence s of length n is an RSBS if the following conditions are met:

It is not empty (that is n ≠ 0).

The length of the sequence is even.

First charactes of the sequence are equal to “(“.

Last charactes of the sequence are equal to “)”.

For example, the sequence “((()))” is an RSBS but the sequences “((())” and “(()())” are not RSBS.

Elena Ivanovna, Anton’s teacher, gave him the following task as a homework. Given a bracket sequence s. Find the number of its distinct subsequences such that they are RSBS. Note that a subsequence of s is a string that can be obtained from s by deleting some of its elements. Two subsequences are considered distinct if distinct sets of positions are deleted.

Because the answer can be very big and Anton’s teacher doesn’t like big numbers, she asks Anton to find the answer modulo 109 + 7.

Anton thought of this task for a very long time, but he still doesn’t know how to solve it. Help Anton to solve this task and write a program that finds the answer for it!

Input

The only line of the input contains a string s — the bracket sequence given in Anton’s homework. The string consists only of characters “(” and “)” (without quotes). It’s guaranteed that the string is not empty and its length doesn’t exceed 200 000.

Output

Output one number — the answer for the task modulo 109 + 7.

Examples

input
)(()()
output
6 input
()()()
output
7 input
)))
output
0

Note

In the first sample the following subsequences are possible:

If we delete characters at the positions 1 and 5 (numbering starts with one), we will get the subsequence “(())”.

If we delete characters at the positions 1, 2, 3 and 4, we will get the subsequence “()”.

If we delete characters at the positions 1, 2, 4 and 5, we will get the subsequence “()”.

If we delete characters at the positions 1, 2, 5 and 6, we will get the subsequence “()”.

If we delete characters at the positions 1, 3, 4 and 5, we will get the subsequence “()”.

If we delete characters at the positions 1, 3, 5 and 6, we will get the subsequence “()”.

The rest of the subsequnces are not RSBS. So we got 6 distinct subsequences that are RSBS, so the answer is 6.

Key

题意:给一大串前后括号组成的字符串,长度为n,从中任取若干括号、按原顺序排列,要求取出的括号前一半都是“(”,后一半都是”)“,问有多少种组合(即组成如((((())))))。如)(()() (没个括号分别编号1~6),有2 42 63 43 65 62 3 4 6 6种。

事后看了题解才AC。很容易想到的是,读取时只存储每一个后括号之前一共有多少个前括号,例如)(()(),有三个后括号,只需存储0 2 3即可(对该数组命名为sum,并假设一共m个后括号)。然后遍历这个sum数组:对于第i个后括号,左侧有sum[i]个前括号,右侧有m-i个后括号(方便起见令ai=sum[i]bi=m-i),以当前后括号为第一个符合符合“((((()))))”的后括号,则当前后括号左侧的后括号都不可能满足,当前后括号右侧的前括号也不满足。则“以当前后括号为第一个符合的后括号”一共有

C1ai∗C0bi+C2ai∗C1bi+C3ai∗C2bi+...+Cmin(ai,bi+1)ai∗Cmin(ai,bi+1)−1bi=∑i=1min(ai,bi+1)Ciai∗Ci−1bi=∑i=1min(ai,bi+1)Cai−iai∗Ci−1bi=∑i=0min(ai−1,bi)Cai−i−1ai∗Cibi

注意a指的是当前后括号左侧的前括号个数,b为当前的后括号右侧后括号个数,故b不包括当前后括号。

最后根据范德蒙恒等式推倒:

若min(ai−1,bi)=ai−1:

∑i=0min(ai−1,bi)Cai−i−1ai∗Cibi=∑i=0ai−1Cai−i−1ai∗Cibi=Cai−1ai+bi

若min(ai,bi+1)=bi+1:

∑i=1min(ai,bi+1)Ciai∗Ci−1bi=∑i=1bi+1Ciai∗Cbi+1−ibi=Cbi+1ai+bi

合起来还是Cmin(ai,bi)ai+bi

那么最终要做的就是把m个组合数求和。因而求组合数也是个难点。这里直接盗用了上面链接的大神的模板。自己写了个求组合数的博客。这里还是预先打表了,这样快很多。

Code

#include<cstdio>
#include<iostream>
#include<string>
#include<algorithm>
#define MX 200005
using namespace std;
typedef long long LL; const int p = 1e9 + 7;
int sum[MX] = { 0 }; // store the sum of all the '(' before the last ')'
LL ans = 0; LL fac[200005], fac_exp[200005];
LL ModExp(LL a, LL b, LL p)
{
LL ans = 1;
while (b)
{
if (b & 1)
ans = ans*a%p;
a = a*a%p;
b >>= 1;
}
return ans;
}
LL C(int n, int m)
{
return fac[n] % p * fac_exp[n - m] % p * fac_exp[m] % p;
} int main()
{
fac[0] = fac_exp[0] = 1;
for (int i = 1;i <= 200000;i++)
{
fac[i] = (fac[i - 1] * i) % p;
fac_exp[i] = ModExp(fac[i], p - 2, p);
} //freopen("in.txt", "r", stdin);
string s;
getline(cin, s);
int num_left = 0, num_right = 0;
for (char c : s) {
if (c == '(') ++num_left;
else {
sum[num_right + 1] = sum[num_right] + num_left;
++num_right;
num_left = 0;
}
}
for (int i = 1;i <= num_right;++i) {
int right = num_right - i + 1;
int left = sum[i];
ans += C(right - 1 + left, right);
}
cout << (int)(ans%p);
return 0;
}

[刷题]Codeforces 785D - Anton and School - 2的更多相关文章

  1. [刷题]Codeforces 794C - Naming Company

    http://codeforces.com/contest/794/problem/C Description Oleg the client and Igor the analyst are goo ...

  2. Codeforces 785D Anton and School - 2 (组合数相关公式+逆元)

    D. Anton and School - 2 time limit per test 2 seconds memory limit per test 256 megabytes input stan ...

  3. [刷题codeforces]650A.637A

    650A Watchmen 637A Voting for Photos 点击查看原题 650A又是一个排序去重的问题,一定要注意数据范围用long long ,而且在写计算组合函数的时候注意也要用l ...

  4. [刷题codeforces]651B/651A

    651B Beautiful Paintings 651A Joysticks 点击可查看原题 651B是一个排序题,只不过多了一步去重然后记录个数.每次筛一层,直到全为0.从这个题里学到一个正确姿势 ...

  5. [刷题]Codeforces 786A - Berzerk

    http://codeforces.com/problemset/problem/786/A Description Rick and Morty are playing their own vers ...

  6. [刷题]Codeforces 746G - New Roads

    Description There are n cities in Berland, each of them has a unique id - an integer from 1 to n, th ...

  7. Codeforces 785D - Anton and School - 2 - [范德蒙德恒等式][快速幂+逆元]

    题目链接:https://codeforces.com/problemset/problem/785/D 题解: 首先很好想的,如果我们预处理出每个 "(" 的左边还有 $x$ 个 ...

  8. CF刷题-Codeforces Round #481-G. Petya's Exams

    题目链接:https://codeforces.com/contest/978/problem/G 题目大意:n天m门考试,每门考试给定三个条件,分别为:1.可以开始复习的日期.2.考试日期.3.必须 ...

  9. CF刷题-Codeforces Round #481-F. Mentors

    题目链接:https://codeforces.com/contest/978/problem/F 题目大意: n个程序员,k对仇家,每个程序员有一个能力值,当甲程序员的能力值绝对大于乙程序员的能力值 ...

随机推荐

  1. The superclass “javax.servlet.http.HttpServlet" was not found on the Java Build Path错误

    1.异常信息 创建maven web项目时,出现 The superclass "javax.servlet.http.HttpServlet" was not found on ...

  2. 山谈c中printf格式修饰符

    废话不多说,简单粗暴地上图. (一)初始定义 (二)运行结果 (三)规律总结 对于如下: printf("%7.4d",12); printf("%4.7f", ...

  3. rsync+inotify实现文件同步更新(配置)

    linux下为了数据安全或者网站同步镜像,不得不考虑一些实时备份的问题,这篇linux下通过rsync+inotify 实现数据实时备份配置过程记录下来,防止遗忘配置过程记录下来,防止遗忘!如有建议技 ...

  4. 使用TagHelper完成分页步骤

    使用TagHelper完成分页步骤 转载 2016-08-23 11:37:33 1 创建一个MyPageOpion类,用来存储分页信息,比如当前页,栏目总数,页面大小,跳转地址(RouteUrl)等 ...

  5. 重温Javascript(四)-函数

    函数 函数声明提升,在执行代码之前会先读取函数声明 sayHi(); function sayHi(){ alert("Hi!"); } 递归 arguments.callee是指 ...

  6. Service详解

    /** * 后台执行的定时任务 */ public class LongRunningService extends Service { @Override public IBinder onBind ...

  7. backdrop-filter 和filter 写出高斯模糊效果 以及两者区别

    http://www.w3cplus.com/css3/advanced-css-filters.html: backdrop-filter:blur(10px);只支持ios端:只作用于当前元素: ...

  8. [Python]peewee使用经验

    peewee 使用经验 本文使用案例是基于 python2.7 实现 以下内容均为个人使用 peewee 的经验和遇到的坑,不会涉及过多的基本操作.所以,没有使用过 peewee,可以先阅读文档 正确 ...

  9. 实现五种分组加密模式ECB,CBC,CFB,OFB,CTR

    没什么好说的,简单无脑! #include<iostream>using namespace std; int ECB(){ int duan[4]; int messageLen = 1 ...

  10. Java环境变量详解

    自己总结些再加抄点: 安装JDK后要配置环境变量,主要有三个: 1 JAVA_HOME ->为JDK的安装目录,如:F:\JAVA\jdk1.6.0_04 2 CLASSPATH ->到哪 ...