三种方法实现PCA算法(Python)
主成分分析,即Principal Component Analysis(PCA),是多元统计中的重要内容,也广泛应用于机器学习和其它领域。它的主要作用是对高维数据进行降维。PCA把原先的n个特征用数目更少的k个特征取代,新特征是旧特征的线性组合,这些线性组合最大化样本方差,尽量使新的k个特征互不相关。关于PCA的更多介绍,请参考:https://en.wikipedia.org/wiki/Principal_component_analysis.
PCA的主要算法如下:
- 组织数据形式,以便于模型使用;
- 计算样本每个特征的平均值;
- 每个样本数据减去该特征的平均值(归一化处理);
- 求协方差矩阵;
- 找到协方差矩阵的特征值和特征向量;
- 对特征值和特征向量重新排列(特征值从大到小排列);
- 对特征值求取累计贡献率;
- 对累计贡献率按照某个特定比例选取特征向量集的子集合;
- 对原始数据(第三步后)进行转换。
其中协方差矩阵的分解可以通过按对称矩阵的特征向量来,也可以通过分解矩阵的SVD来实现,而在Scikit-learn中,也是采用SVD来实现PCA算法的。关于SVD的介绍及其原理,可以参考:矩阵的奇异值分解(SVD)(理论)。
本文将用三种方法来实现PCA算法,一种是原始算法,即上面所描述的算法过程,具体的计算方法和过程,可以参考:A tutorial on Principal Components Analysis, Lindsay I Smith. 一种是带SVD的原始算法,在Python的Numpy模块中已经实现了SVD算法,并且将特征值从大从小排列,省去了对特征值和特征向量重新排列这一步。最后一种方法是用Python的Scikit-learn模块实现的PCA类直接进行计算,来验证前面两种方法的正确性。
用以上三种方法来实现PCA的完整的Python如下:
import numpy as np
from sklearn.decomposition import PCA
import sys
#returns choosing how many main factors
def index_lst(lst, component=0, rate=0):
#component: numbers of main factors
#rate: rate of sum(main factors)/sum(all factors)
#rate range suggest: (0.8,1)
#if you choose rate parameter, return index = 0 or less than len(lst)
if component and rate:
print('Component and rate must choose only one!')
sys.exit(0)
if not component and not rate:
print('Invalid parameter for numbers of components!')
sys.exit(0)
elif component:
print('Choosing by component, components are %s......'%component)
return component
else:
print('Choosing by rate, rate is %s ......'%rate)
for i in range(1, len(lst)):
if sum(lst[:i])/sum(lst) >= rate:
return i
return 0 def main():
# test data
mat = [[-1,-1,0,2,1],[2,0,0,-1,-1],[2,0,1,1,0]] # simple transform of test data
Mat = np.array(mat, dtype='float64')
print('Before PCA transforMation, data is:\n', Mat)
print('\nMethod 1: PCA by original algorithm:')
p,n = np.shape(Mat) # shape of Mat
t = np.mean(Mat, 0) # mean of each column # substract the mean of each column
for i in range(p):
for j in range(n):
Mat[i,j] = float(Mat[i,j]-t[j]) # covariance Matrix
cov_Mat = np.dot(Mat.T, Mat)/(p-1) # PCA by original algorithm
# eigvalues and eigenvectors of covariance Matrix with eigvalues descending
U,V = np.linalg.eigh(cov_Mat)
# Rearrange the eigenvectors and eigenvalues
U = U[::-1]
for i in range(n):
V[i,:] = V[i,:][::-1]
# choose eigenvalue by component or rate, not both of them euqal to 0
Index = index_lst(U, component=2) # choose how many main factors
if Index:
v = V[:,:Index] # subset of Unitary matrix
else: # improper rate choice may return Index=0
print('Invalid rate choice.\nPlease adjust the rate.')
print('Rate distribute follows:')
print([sum(U[:i])/sum(U) for i in range(1, len(U)+1)])
sys.exit(0)
# data transformation
T1 = np.dot(Mat, v)
# print the transformed data
print('We choose %d main factors.'%Index)
print('After PCA transformation, data becomes:\n',T1) # PCA by original algorithm using SVD
print('\nMethod 2: PCA by original algorithm using SVD:')
# u: Unitary matrix, eigenvectors in columns
# d: list of the singular values, sorted in descending order
u,d,v = np.linalg.svd(cov_Mat)
Index = index_lst(d, rate=0.95) # choose how many main factors
T2 = np.dot(Mat, u[:,:Index]) # transformed data
print('We choose %d main factors.'%Index)
print('After PCA transformation, data becomes:\n',T2) # PCA by Scikit-learn
pca = PCA(n_components=2) # n_components can be integer or float in (0,1)
pca.fit(mat) # fit the model
print('\nMethod 3: PCA by Scikit-learn:')
print('After PCA transformation, data becomes:')
print(pca.fit_transform(mat)) # transformed data main()
运行以上代码,输出结果为:

这说明用以上三种方法来实现PCA都是可行的。这样我们就能理解PCA的具体实现过程啦~~有兴趣的读者可以用其它语言实现一下哈~~
参考文献:
- PCA 维基百科: https://en.wikipedia.org/wiki/Principal_component_analysis.
- 讲解详细又全面的PCA教程: A tutorial on Principal Components Analysis, Lindsay I Smith.
- 博客:矩阵的奇异值分解(SVD)(理论):http://www.cnblogs.com/jclian91/p/8022426.html.
- 博客:主成分分析PCA: https://www.cnblogs.com/zhangchaoyang/articles/2222048.html.
- Scikit-learn的PCA介绍:http://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html.
三种方法实现PCA算法(Python)的更多相关文章
- Python使用三种方法实现PCA算法[转]
主成分分析(PCA) vs 多元判别式分析(MDA) PCA和MDA都是线性变换的方法,二者关系密切.在PCA中,我们寻找数据集中最大化方差的成分,在MDA中,我们对类间最大散布的方向更感兴趣. 一句 ...
- python字符串连接的三种方法及其效率、适用场景详解
python字符串连接的方法,一般有以下三种:方法1:直接通过加号(+)操作符连接website=& 39;python& 39;+& 39;tab& 39;+& ...
- python每次处理一个字符的三种方法
python每次处理一个字符的三种方法 a_string = "abccdea" print 'the first' for c in a_string: print ord(c) ...
- python更新数据库脚本三种方法
最近项目的两次版本迭代中,根据业务需求的变化,需要对数据库进行更新,两次分别使用了不同的方式进行更新. 第一种:使用python的MySQLdb模块利用原生的sql语句进行更新 import MySQ ...
- python下载文件的三种方法
Python开发中时长遇到要下载文件的情况,最常用的方法就是通过Http利用urllib或者urllib2模块. 当然你也可以利用ftplib从ftp站点下载文件.此外Python还提供了另外一种方法 ...
- 服务器文档下载zip格式 SQL Server SQL分页查询 C#过滤html标签 EF 延时加载与死锁 在JS方法中返回多个值的三种方法(转载) IEnumerable,ICollection,IList接口问题 不吹不擂,你想要的Python面试都在这里了【315+道题】 基于mvc三层架构和ajax技术实现最简单的文件上传 事件管理
服务器文档下载zip格式 刚好这次项目中遇到了这个东西,就来弄一下,挺简单的,但是前台调用的时候弄错了,浪费了大半天的时间,本人也是菜鸟一枚.开始吧.(MVC的) @using Rattan.Co ...
- python网络编程调用recv函数完整接收数据的三种方法
最近在使用python进行网络编程开发一个通用的tcpclient测试小工具.在使用socket进行网络编程中,如何判定对端发送一条报文是否接收完成,是进行socket网络开发必须要考虑的一个问题.这 ...
- python 多线程编程之threading模块(Thread类)创建线程的三种方法
摘录 python核心编程 上节介绍的thread模块,是不支持守护线程的.当主线程退出的时候,所有的子线程都将终止,不管他们是否仍在工作. 本节开始,我们开始介绍python的另外多线程模块thre ...
- python—字符串拼接三种方法
python—字符串拼接三种方法 1.使用加号(+)号进行拼接 字符串拼接直接进行相加就可以,比较容易理解,但是一定要记得,变量直接相加,不是变量就要用引号引起来,不然会出错,另外数字是要转换为字 ...
随机推荐
- js判断是否使用的是微信浏览器
代码如下: function is_weixin() { var ua = navigator.userAgent.toLowerCase(); return ua.match(/MicroMesse ...
- Linux学习(三)putty,xshell使用以及密匙登陆
一.认识xshell,putty 他们都是服务器登陆客户端.xshell用户体验更好一点.但这里都学一下. putty下载地址:https://www.chiark.greenend.org.uk/~ ...
- Lucky Coins Sequence
Lucky Coins Sequence Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others ...
- PHP(一)OOP基础
[面向过程&面向对象] 1.面向过程:专注于解决一件事情的过程.最大的特点,是有一个个函数来实现功能需求 2.面向对象:专注于有哪一个对象来实现这个功能,最大的特点,时产生一个个具有属性和方法 ...
- leaflet 利用ajax 将前端地图上的数据post到后台
生成Google地图,在地图上单击后,将该点的经纬度反馈给后台. 前端HTML代码: <!DOCTYPE html> <html> <head> <meta ...
- svg snap 笔记
路径中的字母,大写相对于左上角绝对定位,小写相对定位 M110,95,95,110M115,100,100,115 pattern 类似于图片拼贴,可以把指定位置的图案用来填充 var patt ...
- python链接mysql以及常用语法
MySQL是一个关系型数据库管理系统 ,其体积小.速度快.总体拥有成本低,尤其是开放源码这一特点,一般中小型网站的开发都选择 MySQL 作为网站数据库.在使用过程中不总是和它打交道,导致使用时候都得 ...
- git 在linux下服务端搭建
本文以centos为例,其他linux请自行参照对应方式. 1. 服务端安装git yum install git 2. 服务端添加无shell登录权限的用户,将username替换为要添加的用户 u ...
- Git(1)----Eclipse安装Git插件
一.从官网选择系统版本下载Git并安装 地址:https://git-scm.com/downloads/ 二.打开Eclipse 1. 第一种安装方法: help-->Install New ...
- Android 工程师
转发:https://zhuanlan.zhihu.com/p/30429725 这句话我真的憋了好久.Android 工程师只要关注我,我就能让你达到大师级水平,不是面试时的吹牛逼水平,不是自我欺骗 ...