题目背景

SOURCE:NOIP2016-RZZ-1

题目描述

有 N 个城市,这些城市通过 M 条无向边互相连通,每条边有一个权值 Ci ,表示这条边的长度为 2^(Ci) ,没有两条边的长度是相同的。

设 d(i,j)为城市 i 到城市 j 的最短路长度,求:

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAHEAAAA/CAYAAADXLCfMAAAFa0lEQVR4nO1cTW7qMBCevJMEsemCQ/DUjVG33AA2bx/UM1SwrbqBG7BFzaZKDsGiG0Rukmfnl4Dt2I4TxyGfRKu4xJ/rz/aMx5M4MQaMsBp/TDdgRHOMIg4Ao4gDgJqI0QEWjgOOs4GwKFrga1y2CTk3aoBJ7r4iVkTgoRghiL2gKIk98OKAfYs2mOTuIxSX0wgusIT3JYLdxwFfkaILnL03mOsbXz3k7icUl9MfOMIU5q9LQP4RfiJS9gvw4upsW/+4ewpFEX9h9jYHcFfw7vlwxD0ZXc4wm7paG9c77p5CScTwdC4G/vzNA//4CZ/HGZC+bRsmufsKBRGxTTrPoBj48zfw/B3s4AVczl16YJK7x5D1hAIPSJguhtI1TMrQ/qrR3+ofd5/hkB+mB9KIZhgjNgPAKOIAMIo4AFBFLGKRuj4SMU2T3LaCKqK7+oI9yq8QYOePeLHSH+w5SsMkt7VgO64kqJy59MrB5ayOmy2B1H1GuO0Df58YeFlHqndGsrdTudckt2XgOzbzLVzztW33FxaHSHqmuy+o/kt947YN9TpfY9yX2axAcbfBEZPc9kAw7KbDRqnCJLcdEI+darBRyjDJbQGkAuDYRhWd2XXQ2SR33yF5ivHE9rFYDVjcWfsqKwWtrJYoMR9koCbeNdrHVLobKCRKPa99TFcDCu91HyOquGl7pTS8r4tZdwm1bLcntY+JiA+cCkLJE2Mh2YNWOWXxGe0j7QCaLmw73CweZRGfwT4WmQTJrPcoM449C4t7BWxaipv/iV4h04Q0EDGpubRRwo3VhTa58w4tOy0V5a4Tk46VcXTqUDo1rL/Rqmt4njiHbX5cMJt2nKzUHnd0+Adrn5ygbIuE5CSEh2gJWTeJW9Va4NfHskun4SFYvlIrTHC+RA9lDUWM4PCxw789CLbzZlX1hjuCnyPp/XdYuTelWBG0fK2ISPJd2dVc4IwFkcppDk+wYw4KF1ih4EYi0kZsV2iPO51BqNL7IZx2IJWgHP0cwUdL4Eyqx3vIoKDOdj7URYwO8G+NR+f+qzJiO0Gb3MkMqgoWbv7iGfI4q9zpjF0NGQlSy3y2AjDvSQcXDYoihrCZrMH3AvjuXMGWud0pEGly20PSRU5AbG+6zIWbBVRPxc7waKZIknM2m8mjeIvswR9iAhaslJEaG0oZXAUkXKfST6J5ah2hC+7HfWjpCTfbYnA81rrIjM4tRv4PmjhMMMnNglz2AFt0ZkhPgEdOxGS0GDpFMMnNhWjYLZ2F9O/V7Cn1hd0yos439aa5BSAQpOYiiwdTNdQZAE/XeDMpEia5xaEQoclWF5aAeo+ieCOlbZjktgQCIjbM3+R4Vf3mtgc1+0Syr8EbXbSHq2Joixua6i23ZeApnLq9zWyR6LreJ27bwBYxs0WNXPrccMt2pEluC8EQ8TaXRcNH4UzNDLedoNrENOBrBia5bcX4zP4AMD4pPADUihhuHKUnkpIjI8cBoQd1kzcnlm9NFGZQaptEu2yBfjObJxndvwmxK2DHiOqRmm5Xe+DMxHTEOpUZkpfxno13YfVNvN4vWIqMonCT3F/OKBEOWtvqINkui8ARMcsmq7yCEpexnpNXTVaab5Pn68sTaxEOWtueF1ybSMJWqPVXUJIkJMmsMLhv2+3sxVsUfw2T/LpIjRgu+CL++nc5HSJLnSRI7kglK0yMo9q229kbgEfirfn192rwL+/j2sR8hoRhmJXpX06T1L5KhpcIB61tz4uaLYYP64kDJ0nLQ1x/x5nA2ifvTOA5IGmantqSLd828XbZBbMRG7I/nBxhef3uPnd1QDAUscnyLydrmAWjgE0xxk4HgDF2OgCMIg4A/wHxg3oaskLNEgAAAABJRU5ErkJggg==" alt="" />

答案以二进制输出。

输入格式

第一行,两个正整数 N ,M 。
接下来 M 行,每行三个正整数 Ai,Bi,Ci ,表示城市 Ai,Bi 间有一条权值为 Ci 的无向边。

输出格式

输出一个二进制数,表示所有无序点对间的最短路长度之和(即问题描述中的式子)。

样例数据 1

输入

5 6 
1 3 5 
4 5 0 
2 1 3 
3 2 1 
4 3 4 
4 2 2

输出

1000100

备注

【样例解释】

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAZAAAADSCAYAAABkWJYfAAAgAElEQVR4nOxdBWBTZ9s9qbsL9Zbi7m7DZehgG4MxYWMuzLd/G9u3MR8bE5hvTIDBsOFuhaLFrUihSoW6JpX/nrdNl6Zpm0LaJvSe77sjvbm5ktz7nvex8yhKJECGDBkyZMioJcwa+gRkyJAhQ4ZpQiYQGTJkyJBxU5AJRIYMGTJk3BRkApEhQ4YMGTcFi4Y+ARkyqkRRKtb9/A22nE5B27EP45FhnWBe1baFadi7eilWbj+CjALAwTsUIybeizE9mtbnGcuQ0aigkLOwZBgjks9sxJyXX8TCjefE34PeWowt/5sKSx3bFqZE4JVZM/HlquOwdnSDi50CqYk3oLTywoNzv8f82RPgVCXzyJAh42Yhu7BkGBmKEbHyIwwaOBpLov3x+NTewupwsLHSvXnJDXwz+yF8seoyJr7+Mw6cPI/LlyJxcNsijG5hhsULvsXeqIJ6vQIZMhoLZBeWDCNDPg6FH4TLoDfw9/dz4LBzNr5fEo7iKuzkG2F/4dM/T6LzvfOx9IOHyy2UTkNmYP3+YTgfn48mPrL5IUNGXUAmEBlGBnNMfPk7THfzhoN0d57OzkXVPtZC7NqwDfFwwjNPPwhVVDh+XbUT13OK4dSkBUbfNQWtWirq8dxlyGhckAlEhpHBGt5e3uV/FVe7bQpOXT0HOHkjfuu7GPnn3ziVlI6CglzkKUvw/kcLMOebBXh6VBvINHL7Ii8/H+kZmbAwt4CbqzPMzc1RoFQi/OBRdGjfGm4uLhW2Z9hXoaj5jsjPL4CNjXX53zk5udi6cy+G3dEf9vZ2Br8OIjsnBw729nWy77qAHAORYbrIz0BmZrr01F3Cb9+tQscn5+HQxTgkxl3GyvlPwyJ2N1589Cmsv5jT0Gcqow6RIZHHN9/9irmfzIdKVSjWrVyzAUqJRFycnFBUVIy4+OvYJg3+G7fsRGFhYbX7I8EcOnIcS/9Zg2++/xWHI06I9XZ2trCxtsbfK9dK+ywy6DXEJyRi7cat2LF7HzZu3SnIyhQgE4gM04U0WBRmS+RQbI1hTy7A1y/cjebeznD0CMHEZ7/C/Cf6QxW3G4tX7K7BkpFhymji7QUnRwf4+/kIi+FK1DVci47FwP69YWZmhqysbJw6ex6bt+3Glh27YWFRvePlwKEI7A4LR++eXSVr2BMffPoVTpw6K6yWIYP6IjEpBWfORRrs/EkW6zZuQ3BgAPr26o6Y2Hhs3x1msP3XJWQCkWG6kAYChQUjJK7oMai31psKDBozEA4owZFL55DeEOcno85xPTEZmRJBREXHoG3rlmLd5u27ERIcCGur0sw9JycHDBnYD30lQiAJ1FS3cC0mFpclEuKAPmXinXB2csQmySogLC0t0aJZCA4ejjDYNeTn5yP84BFBdu5urmgWGoLk5BsG239dQo6ByDBd2DjBzauJ9CILBfmVU3WtnGxFCnCeSgVVvZ+cjLoEYxx/r1gLO1sbxMUnIOVGmkQgLYT76eq1GHTv0rF8Ww7MXKBH3IMYPmQgunZuDysrS0FOedK95S1ZOWo0DQ7A4aPHdX42Ly8fuXl5ZTG30v+WSP8zl47P2AwXW+mcNWMwLi7O6NC+DZ556U2MGTEEbq4uGDV8cK2/k4aATCAyjBrlz5n0otLjr/BCh2adpRercPLwCenJH1bh7evnY0FPckdPTzjW/anKqCeQJL794TeYSXfE5JnTsWTZarhLg25ggB/S0zNEzMPV1UXn52h+1EQjHMDdyj6/Ys0GeHl6YMqEMeXvOzs5ITeXRJEvCEwTtFyOHj8JM4VZ+YGKi4vh5OAgiMLFxQnt27Sq4EYjqYwYOggXr0Rh5b8bEeDvizEjh97cl1PPkAlEhlHD2rL0FjW3sNJxs5pjyLgxaPnFKqz/4UtsntobI5o6lL6VGYnvf1shWR5uGNq3P+omZ0ZGQ+DCpSvYs+8gPn73DWkAt0VGZiZCQ4LEe0pVobAcLMyrqP2pRTrezj37kZKSinffeLFC1hWthwJlAW7cSIWdNNhrok2r5mjVolnlY0rkpc7+0o7BJCQmiQA6j0OL57P532He19/jw3df1ytbrCEhE4gMo0JJThJ2rFmNi1mQBgIrRO08JdZfCvsXCz1vwEKZDwv3IIwYOxK+1oBT9/swd/Ya3PP+WkwYMRH/98IDaGmfhn9/+xJ/7kpCl8lzMePOFg18VTIMieiYOGEhBAX5i7+vRsehf9+ewvqwsChN4VWpKjstOdM3oyWrMShnZGbBUpqkkIg0cfrsBURKRPXM4w8iv0CJlWs2YtL4UeI9WhQkAUdHh0rHoPssKjq20nEIZm4Jd1W71rDUIJGTp86I7C5PD3exvP/2K3jng3niOrjemCETiAyjQnHKBcx/+jGsTau4/tzaH/GktBCKkIHYfEcpgQC2uOvtn7Dc/UN8tuAPvPXkNrGNlUcLTH3xa7z1+uMI0iWgJcNk4eHmCkfJImD67vZjJ0XQu09hVxyRXg8e2BcOdvZITE4RwWhCqVQhRbIWOLhzPd1MAX4+YoLCNN2S4hK8+epz5fs/f+ESPv7iW5HZ9f4nX+G6ZCEMGzyw/P006bhMD3Zxdqp0bk0lS6hpmTWkL5o3C8XefYdw4eJlBAX6I+L4KXRs37o8CcCYIYspGinSsgqQkpEnTPLMXCVuZBSIYJyXiy0cbCxhZWkODxc7uDoa9wyltihR5SI2KgqZ5RNIRVkchC6A0jVm1g4IlB5Sey0vRVZyDOKSMsEMfRsnL4QGeNbbecuoP3Amz9qMy1euiYwouoByc/MwfMgAyTJxxdJ//hUWyP1T7xLbZ0pWxsEjx5AkkYdSWu/h5oZePbqI2f72XWHYvjMMc995tdxiOHXmHHbvOyjut8KiQlhZWGLsqKEixkL89fdK5OTmY9ZD9xnsmiJOnBa1J4VFKvg28cbIYXdUsoqMETKBGBEycpQIOxWPS7HpOBuTjuRMpXRDFYkAMn26vMH5N2dMlhYKNHGxQSt/Z7Twd0Hvtj5wsr+9yESGjOpQVUU5U3sX/bUMzz35SIVKcl3IzMrC6nVbcP+9k/SKNzBGMe/rH3Dv5PFo1SL0ps9dFzgSkxzphjMVyARiBKClsSrsCvafvY7U7EJYWFnC1ckW9nbWElGYw8xM88ZWoFj6yQoLi6RZUAHSMvOku64QLrZm6Nu2Ccb3bQo3J+OfuciQUZfYtmsvlPlKDB08QATVq8KBQ0dh72AvMqNqAivY/92wFcXSBG7yhNGGPF2ThUwgDYjCohKsDY/C8t2XkK0sgbenC5wcrGFubiZmIyVlmRu6oFCUunZKrZJi5OYpkZSSAScrBSb0CcbYPk3FfmTcGnJzc0WhFwcPGxsb2NnZ1VjJLKPhwUD3sROnRRyEhYBVgTN+86oytrRAN1nEiVPo07NbaV2JDJlAGgopmQX4YnkEjl5OhV8TN7i72IsYR3FVuuU1gERCSyVdskgSk9PRKcgZz07qCHdn2RqpDtnZ2cjMzMTly5dx/vx5XLt2DXFxcUhOThbrSSAcLEgcGRkZsLa2FouLiwuCg4MREhKCzp07o1WrVnBzcxOVyjJkNBbIBNIAuJqYiff/OILELBWaBXvD0sJMFD8ZAhzs+JNei0uFu20JXr67C0L9KhdVNVZwxnns2DGcOnUKx48fx9GjR3H27FlBFtUJ5JEw0tN1C6LQIvH19UW3bt3Qq1cvDBgwAD179qyrS5Ahw2ggE0g941piFl7/aT+UsEDTQE9hcRj6J1BbI/FJmTBX5WHOjO5o6tt4SYQZOSSLFStW4MCBAzh9+jRu3CjVGnJychLkUR3s7e3h7OyM+Pj4Krdp0qQJrl+/Ll67urqib9++mDlzJsaMGSNbJTJuW8gEUo9gltVrP+xHYnYhmod4o6iwqEZht1uBhWTZxCZkwMWyEB880gfODo0rS4vuqR07duC7777Drl27kJeXV2mb1q1b48qVKygoqLrtLV1WJJCkpCSd79PqozuL+9GEkKgYMQIvv/wyBg0adEvXIkOGMUKOBNUTGNr4ds1JXLuRJywPuqzqmrkLC4vh6+2M5LwSLFh9QgTbGwuWL18uZv+PPPIINm7cqJM8iMTExCrJgwRA64EWCBcG0Vl8ph10ZcA2Jiam0ufpEtuwYQPGjh2LDz/8EDk5cl+SugB7gFDAsKBAWW7Ns4p7z/6DothQG/pOmZnpqInMzGwcKesNUt9Q1dDDpKEgWyD1BNZ3zF0agRahvrCUBqD6+tqZqVUCBWJjk/HwsFCM6BFSL8dtKNAd9eqrr+LHH38UAzgD23TpqV1WutCyZUs4OjoiICBAvPbz84OXlxc8KcIoredC4mAmVlZWFlJTU6XvM1YE3BlLYaD98OHDSElJ0bl/kg/PhVbIDz/8II4jw3CIjo3DT78tEROBd//vJVH7QVFCpu9SpJA1VOnpmYi6Fi2ReJ7o81FdrQWfzUtXruLi5SjxuV7du6BpSKD4/Vet3QRHBweMHDbIoNdASZWoq9HSvZWGwYP6la8nKbLCnrpbbm4u6NWja9U6Xw0AOR+xHpCvKsKf2yPh7uYMG0uLerUEyFMsI3FyccS6g9fQu63vbVtwyID4Cy+8IOId6oA4B3fGJDRBlxSD3QMHDkS7du3Qvn17BAUFwfYmK39pWZBAwsPDsXr1ahw6dKj8PVotJCJaKJs2bcLEiROxZMkSNG/e/OYvVEYFBPr7wcHeTliLJI9Ll6/i7PlIvDr7KaE5xcF5r2SN/Lthi1Dp7dene7X7O3fhIj75YiFefeFJnMg8i9fe/gCffzRHyJ9QKoVKwO3btYKfTxODnD8tqH3hh7Flxx5xv2oSyKq1G6RJUQ5GDh2IVes2i86Fd08aa5DjGgKyC6sesPNYLGJu5MHLzbH25CHqPcw0ltqrc7Lw0NnBBolZRdgREV3rz5sCtm3bhsmTJ2PPnj2ljXnc3cV61nAw/ZZZVMyMmjt3Lg4ePIi1a9fi3XffxZQpU0QK7s2SB0ELg9bF66+/js2bN2PZsmXo3bu0wRWPy5RgNaGR5J5++ukqrRUZtQMrw5kkQSukY7vWYh1VdFs0aypEEgl7O1sMGtBHqOTqY/lzfw4OdvD380WPrp2E1lZKSqkFy4ZPlHffF36ohr3oD9Zr9evdHQP796pQOU/i2x12QLwXGOiPbp3bY+2GraIHvLFAJpA6Rp6yCNsjYuHibC+C2vpDATMLa1hYWsFMusEUZqWLmbklLKxsRIOa2sLD3QlhZxORlVN1wNjUwED5//73P8yYMUO4lxifoBuLbic1KdDSWLx4McLCwvDGG2+gY8eO4v26AAmDpEQimTdvniAOzdgHrZG9e/fiueee06kYK0N/rNu0DVu278Jvfy4TbWbVDaXOX7yM0JDg8u2YZk1hREs9C0Dbt22NeR/OEbGt1Ws3Ybg0+2/bpmX5+02DA3HpyjWdn+XvTYuCMYvyha2XpX/5HvepDU54nJwcK4knsi0v2/HalPUcYcYgySMtLUOv66gPyC6sOkZMUhYi4zMRHOBVqyJBcytrqFIjERm+BmcP7UFqmjQIKazgFNAJLfuMR+uuPWFnoRLV7PqAD5adrTXi4zIQk5yFNibuxmIMghlWS5cuxfbt26FUKoWrivELuouuXr0qCvyefPJJTJs27ZYsjJsBCWr27Nlo2rQpnnjiCSQkJMDHx0cMJAzok9CGDh2Khx56qF7P63YBSSP+eiJmPTQNi5etFnEJquBy1m5upoCrS2WlXH2fPlFLJf0btv+QREaXcM/k8bDSSMWmlHzC9SRBBtoV6eEHj+LshYsVtidx0HJxkEjMx8uzAhlpgvvTNJCYGEDyUa9kTxLGdRKTkuDr463n1dQtZAKpY5yPTgWtCRsbS72LBc0sbVAQtxdbF76Jc1FJcPDtiCYhIUBBChLOrsH2Y5sQNfoNjLrnbtgp8qEnhwgScXSwxcnLKWgT7HHzF9UAYBEfC/7OnDmDiIgIkd1ES4PrSRocoNPSSjXgGeNo0aKFSN/t0aNHg573+PHjBbE99thjoo5Es+bkgw8+wOjRo+HtbRyDgakg6loM1mzYgndef1Gyqt2EC4iNnOjepVXHWEhV8iQ6+lrqBK0BBsqbeHviw8+/lSZfdujdo4t4z9XFWVgzdA1r+wEY5O7RrRO0O1eVSw/V4DnQ5aJWr6M1kpdXADc310rbNBRkAqljHLmYIgZtvWFmBUuk4MjquYI8goa/i5F33Qkne2kfxUpkXFiDDd+/gysbf0Nkl8Ho1tYVRfn6uUJ4GyosLXDiyg3cO+TmrqcuwBkaYxV8+BlEZHyAFgYL8y5cuCCC4ky35XYsAiQoLcIZG7OlOCh7eHiIOg2SyL333ovPPvtMEIsxgJXpb775JqZPn16+joMcrSSmGzMmIkN/nD9/EW7OLmjZoqn4m4TSv3cP0Y+cYPptVa4iLpqDNLdTaDV/Wrl2k/TbRGP2M48Kqya/IF/IvqsJhB0QaUma6Rjs2dOD/UN06aXxMz5NvCSy093gTDS80iAYL+meZkxEHT/Lzs6RJoHFkjXjVuN3VF+QCaSOkZyhlAY7a73TdhUoRmGBCk6hQ9DB2QEdxk6CuxO7rKmgMLeHT7fxCN26GLEpschiYM/cQ/qMSi/znOdgbmYOVVEhCqR70voWsgHV18N/mT7Jm5yumTxhdqvEoizrDMc4RZ7I0y8Qgz1jFXyYaD2QGJhiy0AzHyBqUjE9lvtjvICEoo4h+PuXdqBjai6tDH6Wx+f+OBBw+4cffhhvvfWWCGwbE+hGW79+vcjAIulxgOG1LViwQBAeCVCGfmBXP2ta9BJR7DoULrKuBvXrLXp+UOiwWBpk09IzoE5Y573EGg6myCZLz0xiUrKwXHjPzF/wM+ylycgTj84o3//FS1dwTiIptk2Ii0+ASlmInsKqKEVqWoZIqdUlqNi8WYhI+dVl6VDrTpdlREuGPUsSrvNZSBP9Tejy4n4YyI8oE4Vkmm+Prp1hW4NEfX1CrgO5SXBw5ADAGS8HvOjoaDFj5mDG2XROTrb0Ogcxlu3Qqf9IWJjpK1nCbcxhYeMAS/MSKPNyoLCyh4W5Qnw+P2E31n78KC6ltcCY/1uEDqF20sBciyIjMwvkJFxB3oV1KFZRKLD0hlYrzmqb0Bz0CzWKmEgIfCDV69SFdrx2bsv9lAYSVWIbLvyelDrajPJYmt8JXT3cVl3YR5Lg+/ysWtCQ7xOsDOd3z2MzvsFA+WuvvSb0qIwVtJ7uuusuQZYkVfX38c8//4j1MvQDayN27t0vfY834O/bBFckC4QJKiOG0OXkhR9/WwxPiSAmjB0ptmdcZP+Bw7gcFS3ureCgAAzo1xOu0j3017JVOBpxEl999l75/tm9kD3XmTKbk5OL1i2bYdyY4eXvf//zHzCXJgCPPDDVINfD+2DrzjDExMQiWzpegL+vyLzy9WkiCGzz9j1iGz6ZE8eOkiZK7gY5riEgE4ie4KDIojHOkC9duiTSRfkvlVu1B1lNtBvxBMbMeBaFqoKbKB6UTG5FPq6fCUeKNFjmp13FlcObkVboiTZjZqPPgF4wKyrQu7KWsLSyQfKlE/j9/QfEORkCHPjV8Qd9wVk4SUGtH0WQDLSJhtYG983vjkTBz9AiofYULZJOnToJ11C/fv30luVuSDz44INYtGhRhXUPPPAAfvvtt4Y5IRMGXToODqWWZr70DKr7h9OltXzVOrzwzCxRdMfkFaVKKSY7ZgozyZovgKWFpYidkCBWrt2I6fdUbChFqyAtLV2axFjBQcOaZRzi0/kLMe3eu9CyWVPDXAgnhhIp0iplgSOvhTEW9f3MsYUWFDO1jK3ZlOzCqgYczKjcStfD/v37BYFUpYdUFSytrIRNcVMsrTCHuVkOzq35BEcj1UJ+dmg1/nl0798PVmaMG5QAtakNkba1sraAtY2dQQiEhXJqa6A24MOhPeCTGLTdAg4ODmK2rtab6tKli8hs6tOnDzp06CBUcE0J1Mb6448/KvjomRRAF199Z4qZOtTkQajJgwiRLIymwQHYvTccA/v3FiSi+b7m6yPHToiYhLblzfiGu1awmpPI9Zu3o23rloYjD0KhqFD/oXl+BImFLjNjhEwgOkBRvK1btwp/NSuM1W4TNTiocdGcPVeFWzLwSgpRWOyITvd/gpCMDBRkxCL2+CZEbp2D5TGXMeqRp+HlYKZ3Kq8apS3GDVMNr+nOqg3o6tMkC5IJU19Zoc3BlTnvtDJIGPyXWVUkDq630sqXNyXccccdIrhPwuA1M/7D+4u9SJh2LMMwGDt6GHbuCRcBb3fXqrOWunXpqHfv8SzJ4mH8ZfCAPoY6TZOHTCAaYFbMTz/9hL///lu4p6oCBzDOvPWBSN0tKR209R7mJTObxYIKSINzQQlcgzvDXRQRWqH9wLFw+/4hbN/7Cw6FdcWosYOhKM7R340lbcjccnOz2le0VzjFsswVxik4qHOWxL/53ajjIiQEvs9/Sbj8zlhox5k2SYHV4hxEuY5WDBe6trheW37kdgFTdtu0aYMTJ06Uf2ecsMgEYlhYW1lj5NBBNW7HALq+cHF20mufjQkygUhgDQGJgwJ8lL2oqT8ExfQ4a+TAxwGPgx199dRT4uDHwZN+Uytp8Nx00Vq0wrS20rNynIFlVTZuxJ6HytwZbj4+MC9UonSOnw8LW18079lfMs8vIC42Enmq4bCXuEBfI4T+VVsHV3z46TzYW5UKLeqCmgjUIBFwwBOZXNKgz/e5jmRgV/YQkiDUqZLcVvicpdf8l3/ztSlbD4YACSM0NFRUqmtCl5qvDBnGjkZPIMzDf++990R8gyABcNGl3soBk1k+1Dlq27atcLewpWl1fvhLPxzADYlAbKwd9HJnsYiwKOUY9s5/DFcV3TBxzg9o5m4pDfwMLJvBXBrT81JvgA4oSwsrmCmkfdbCG1VcVAgbW3s8PushWcemgaBOR9YEU5JlyDA1NFoCYaEai7v++uuvCj58+uZZT6AG3S90LYwbNw7Dhg0TVgZdLfqibYAT1kckwNPNQa9xvriwGNbu/nAPcEdkxH4cXP03nO+aKMQQUVKEzIubcWjXbmlf1ggO7QBbS5X0Gf3OhfRlYw54O9rI5NGAYOqpNnKyq7d6ZcgwRjRKAmEK7jPPPIOTJ09Weo+ZV8woYl8IKqyyyOtWusl1auaBleHXUKijMlYnigtQaB2ALpNeRVLiHFze+h7+OrMW/sGBMFOlIuHcAaRnF8Kn37Po1KMTFMp8vWMrdJ9kZuZiVMegm74eGbeG5EwVkrIVUJix6thCJNAVqpRIyShAapYSbo6N28V3M6Blr51FxUSMk2fOITQ4SJoEOhjkOEwbjo1PEKq+MkrR6OpAfv/9dyEdQUtDFxjPePTRRzFr1izhq75VpGbl442fD6DIwhYuTjZ6CioqYGFljbzEkzgfthJnD+9DWjrFFC3g6NcRLfpMQLteA+FoUyy6DuoDHtZBMj/SUtLwypROCGxSWWxOhuHBNsYXY9MRduY6LselIzO3EFmStZGdnihcokwXzc8vgJWto2T5eovfqFWgGwa29xG/kaOdTCg14VpMHJYsX43ioiK88MxjIiV26469SM/IENlYTIulim1SUoooKmTarr71FJevXEVCYrIo7GMB48o1G4S0et9ehi1Y5b5ZIX8jNQ2dO7bTWF+Ao8dOiQr6oCB/dGrf1qDHvVU0Kgtk/vz5orVoVeTBfhKvvPIKunevvuFMbeDmaIMuoe7YfDJZIhCmC+pXjV6oLICNVwd0ntQWHcapyrOsOHM1t7BESZFKb/IgWDSVnpGLFj4O8HLTP/NExs0hI0eFTYeuYsexOCSk5cHSyhJOTnZwcLWDm5c7LK1bV0hfKCxUlSoYFKiw60wytkqf83e3xR0dfDGiRxDsbWUiqQqB/r5CdoRV3Cz8i4u/jgOHI/DC07MEebBnyJ6wcKzbtF0IEb7/9it67VepUuGLb39EU8mKIYFw36xg/+WPvyUrJLRSncjNgtpdO/fsw+btuwVhLPjiw9LjK5X4Z/V6ODk6ivvnky8WiGZSE+4caZDjGgKNxhXOnhHsVscMK6aQaoJBcGZgURrckOShxuhewbBWFCI3X1mLhlAlKFKVyouwoJDEoRCyI6Xr1QJreqOkGEXKfPRq4wMbq0Y1b6hX0NJbf/Aanl+wB7/vuASVuRWah/ogNNgbHq72sLW2gLmZ9Bsq86RJwn+LoqRQvOcqkUxwgAdCQ3yQByv8sSsKL38nDS4Hr9ZbG2RTgpIacdIzlZSSjC4d24vXO3bvQ7A0W7e3L63vsJEGftZ7BAf4i5m+vk8g5U+SU1IrSLP7+fqIdN4wAzaU4jl36tBWtM7VLK5lP/d1G7cLqfrRwwdj9LDBWPDDIqNqKNUoRhJmWc2ZM0e8ZgEXA+MUr6PqK5VSaZlQEqOu4O/piGGd/LD2aAKaSQNJrQb/Empo1ZIstCEc7Uo09bJHD4lAZNQN0rOV+HrVCew/lwgvT1e0buYBMzOFqAWq6Tf/jxskcinLyXZztoersx1SJctx4YYLOHE5BU9O7AAH2RoR2H/wiHBLUZokPiEJbVqXqtyeOnsek8ePKd+OqePUyLKzs4VCT8WEU2fOIyn5Bnr36FrptwttGozTZy8Y7DroHeD5UapEc4LJcWravRPh71f6zLKxFAmwRN94aj3gtieQb7/9VrQu1QTlSFj8xkA6iUXd/rQuMaFfKPaduY6UtGwxE9W3N8itQwFLMzanycXYYe3r6ZiNDzHJOfho8RFcTclFy1BfadCyKCOOm7caisoGCjeJRJwdbbH/YjJSFh3EC1M6o4m7YQLDpgr2N484fgoPTrsb/6zZIBottWgWItxVxdL3zqZP2ijW04KjMu6RiBMYf+dw/LNqgzTjz6vwPivbKXIo+oFoeRRotZyLvFShhkqcj5uLKKZt4uVRpZw7iUrzFBnLuTfIrqoAACAASURBVHPkUPGaAfwNW3bgoRn3GpXkzW1NIKtXrxYxDV2zv0ceeQSff/55vZ2Lq5MNHhvbDnOXHJVMagvh065Nh8KbAfduZaFAWnIqxnT3R8tA4+kjcDvheloe5iw6gPS8ErRu7iu+eENOEHifcKBqFuKF6Pg0zP3rCN6a3h1ebsYlWV9fYCfC35eswMvPPi6Uddmutk3L5qJYlTEExirU/dC1oU9DqS079iAo0F8M1OmZmaJ2SlOrzMPdRYgyio6EWnpunTu2lyyhlhVd1Sy+LRNHpLVRHXS5uBmL+fPvVejRpaNEmFNqPP/6xG1LIOfOnRMWhraOFfH888/jk08+qfdz6t7KGw8MaY5ft15CSLA3rKSbXFfjG0OA5GFpYY7MtAx0aeqKO/vcekaZjMrIzFUJyyM1rxgtpN9Uuy2poSDiH9L/A/3cEJOQhs+WHcOcB3o0yuD66dPnpeu2Q9s2pTP5K1ej0V0aXNUTxdLfoPKPoKuhlC5wzGDjph279yMuLkG4jejS6tGtVGomOzsXhdKxdO0nOjYeSckpOhpKlaBQVQhvL0+0aK5biLG0oVTlfW7Ztkt0Rpxw5wjs3X8QHdq1gbOTY7XXUF+4LQmEqq4kDxYLaoPpufPmzatFMNuwmDigObLzVVgedhX+fl5llohhSYTyJJKRg/S0dDT3tsP04W103pgybh0/rz+DyIRstG7mW2fkoQlaNn7eLrgck4zv157CM5M6SxOFRpMLI2BtYyWaKtna2ODIsZOiAdTAfr0RfugounXuKGbsTNdVgxacaGaWlSUaTVGSnUq+JJxFfy0XskP3TB5Xvv3UuyeWNUcrwP4Dh4QriQ2d1EiVnisXZ0eY62goxV7l7m4uOscXkpq20q56PTOuuN/0jCzhhnOwZ6akAiv/3SCSApg2/Pvif0THww5tW9/iN2g4mL8joaFPwtBgl7eFCxdWWj927FiRbdXQekwdQz3haG2GA6fjUAQz2NkapsMYxy4LyUQ2RzEyUtPRo7k7Hh7dHnY2t+U8ocERdioei7ZeQLMQHzGI11eSFAcnFyc7nL6SgibOVgjx0V8Z4XYAW7qyZ8zpcxegUqpE/IPZiqyR8PBww8WLV2AmPQctyiTXOSDv3X9INKBibILxQC9PD+Hq2ht+GEclErpz1NDy/ZsLzTZrHD1+UrjL6A5zdnZCgF+pZNGuvfuFO4tWjzbYS53Beir8Vlqk9brGHp77dokkrkXHij4gJDovT3eR/cVYD8mQqcmXJUurfdtWIrDfUBNgbdx2hYTs28F6jhKhOqsq17SidtXatWuFdpWx4OiFRPy66SwSc4rg7ekCW+mGLinRt3Phf+DWvKEspHsqLycXliUqDOnij9G9DNizQEYF5CuL8OJ3e5FWoIB/E9d6TIooBS3KjKw82JUU4KNH+4q4WmMDOwayxzjB2bu6LuPs+Uhs2rYLs5+aVZqAKFkatDpIBOzAyXobWiAcoCl0uvSfNXjo/nsqDMp8Bkk86pgFrRjGWmjJzP3sa0waN8pgRX08Fi0jIUAqLbR+GHDn+RYolRpxmxJYSOesy/JpKNxWBELf5cSJE7Flyxbh62S9B28WXuLixYsxcqTxFOCokZKRh40HorDzZAKKzSxgK5muVpbmIn6hbvkqfqDyn0khHgr1za4sLIKVuXSDSzdaQV4+2gW6YFj3IIT6GWcDmtsF245G4/MVp0XQ/OYngyVCXYCqA4qy+p5aJVZIB45PuIH7+gVhbD85xqWJ3/5ahtYtm6NH107VztZZz8GAeB89Ksv5LK7btE1YMsyGMg4boGFxW01b2OmN5EHQHx0fHy9MRqbxGiN5EB7Otrh/RBvJYgjAnpNxOHguETl5JUgtlG5Yabbk7Ggv8sPNRfCvtFAtV7IyaNZam5fAEsUolgikQ7AberVtLmda1QNUkrWxNSJWmvE6il7cN219SORhrihAWvR5FKgs4OAZAFsbS70tUA5gDtL9cVCyZAd3C4S9jWWNn2ksuGv8aCFnkto0vdqKcepa6RuQ5jPH1rOTJ94pk0cZbhsLhHLYffv2FT3LNcHKcpIKe3eYAvhzXIpNx+Hz15GWW4RLkedx4kg4rK0tRXyDFpVvYCg6dukFN2cbdG7midZB7sJqkVE/iE7KwuyF++Dv73ULsQ8zWNraIOXQAiz/dj4yC3ww9LWf0bVjCFR6VhqLCYXEXUmJN/Dy5Pbo2MzrZk7ktoYuoUVj2NftgtvGAmFDKG3yoPXx9ttvmwx5ELxBmwe4ioVYtOgIvlw2r8I299w9BS98/FRDnJ4MCYcvJKNEYSZ81DdbFWxubQtlwi7s+mOhRB5cYwFFLYmIxEULSFmsEEKNMoFUhiEHfJk8KsN4ojG3gOjoaJFdpY1JkybhzjvvbIAzMhxsrCu3zmUFrDHJGTQ2nI9OFbISCv2bFFeAwtwG5qpYHPrjf7icG4yWLdlg6ubkahgz8XSzx/mYdChVtyh5I0NGLXFbEAgD5NeuXauwjk2fXn311QY6I8NBu9K1FAq9ZRlkGB7J6XmwtbG6OdeVwkKyjItweeNn2BdxHZ2n/h9aCctBeVN0RLeKpWRpR8ZnlnWtlCGj/mDyLiyq6y5atKjSejaCqkuBxPoC3XCsUNWUY2EchEkC5jrJRYYhceHCBURFRYkYW3JSIuKuJ+NcnmQ1dOsP/aT5NaGApWRRZpxdhO0rNsC918sYOKQ3rv760S2dI10rSlUx8pRFkLu8/IcrV6+Jym97O8O0L2DKL9OF1eKGMm4DAlm1ahXOnz9fYR2tD2pd3Q5gwRJJhLnharDSnoSiKdgmw3Dg/bRjxw5s3LgRp06dqmTddhz3Ijr0G4YSVV4Ve9CFEphZ2qE4LQI7f/4Mae6DcO/0B+BgXoDCWxBcVMPO1gqZOUp4N0J9rJi4eKzbuE0Q6YPT7xbV3uGHIgSBqHtncMLFWhDWW/j7+VbbUIoNvihJ4u3lIaraE+IT0bJFqEh72x0WLqREWNBnSNAVmZ2dLRpKhQQHVnjv6rUYXI66huahTREY4GvQ494qTJpAWCi4bNmySuvZu7xbN8N2DGsoVEUgdaWh1Zhx+vRp/Pzzz8Ki5fedX0U2FKUtGE6t1bBvZg1LpOPI3//DuTgHDHz5dQR5WkGlzDHEqcPWyhIZOQUG2ZepwdvTQ/TtSEtPF8WBHIR37A7D4zNnSNaHrVCy3XfgMDZt3SkSat569blq98dOhs++9KYgJDagGjtqKNq1bQlrMyv07NYZy1evE/1G2KfDEOBkcPfecGzevkdImnzx8Tvl761Ys0GoAzdrGoz/fTRPNJQaPmSgQY5rCJg0gRw/fhx79+6tsI4FhI899liFdamXD2PlilXYdyIK+cUK2LsHof+o8Rg/qhdcdESBYo5vx9/L1+BYVDKKpcfet2V3jJ88GQPa1r/pWlqRWtHSSE1NLW00JcMg4EP71Vdf4bPPPhOuKjXY0lg7s0+g1p4rZmwBsbu/wd79kWgz/Uf07dcRioIcmNs5lGlZKWBhbQ9rO3sUKwtKZeBrk/SjKIZ5I9U74wSLs/fuXTqJ55/aUbQeqElFmEvWBnt4uDg7C5mQmrKpsiTCYW+RuyeNQ4C/D/x8/mtAR00stiLef+AIRgwdZJDzZyyNbXJbtWyGo8dOVHiPEu6d27dF/749pdfbRVfFYYMHGE1GmEkTCOs7tNvTshakT58+ZX+pcPiPOXj4xU9xOrkE7k2awN6iGDcSEvDzt1+g15SX8MvPc9DasWyALs7Cv/NewNNv/4SYPHN4SKaujSoTsUv+wFdfLMCL837E/x7uh/pU0iKBsPkVrS0+KLQ8OGPh3zJuHSQMJlv8/vvvFQr4OBClSzNaXcjRofBcHczMrZAftxU7/voDBW59EeitQNSBtWDSlIV5MRKSs8EgelLkfkQWJ8CpSQgcHW1qlWmXm6eCi4NhNNVMBecuXBTuHQ6msfHXcd/dE8X64yfPYMzI/7StKLrIGbyrizOycmq2+PiMuTg5SpaNOzIysoRulqWGui73RbkUQxEI3Wnc56UrUeK+08S7b7wozv96YjISk25g1PA7jIY8CJMlELoXGP/QxoQJE2BXFjRLOvo77n3wQ1xx7oIPF3+OacO7wtOmCFEnd2HuS0/ir+VzMafHUCx7aRA4rTy38jNMf/knKIP74dtvP8Fd0izRXpmE/Su/wRMvfI5PX3wV3ftsw12t6q+hi5ubmzC7aXXQnUXy4A2eIZnZ9dEI63ZGZGQkpk2bhiNHjsDb2xvJycnlrkH+SwIJCgoS33+7du2EjpqjoxMOJHsKNQAbK/0eZLYizks+hkRp7CrJ3odNn+/TuV3E0tcRAV8MeekXdOsWCFWefi4pDih5qkI42DWemNje8EPYun03pkwcK+RFSP6cwZPc2fLVw71y9bm+mYsUREzPzBJxh0tXrmLz1l14YtaMciVdT+m527knXGdh4eGjx3FR+owm4QhCksjL3t4OXtJnq5JzZ2907VNkwJ5Cij8tWgJnZ0dMnjBar2uoL5gsgYSHhwsXliY8PT0xYsSI8r/Tk1PQpGN3jH1mPl6b2rt8feveE/DO/53FP2P+D4d3H0eBRCDWyEH4kYOw9AjCrLk/4cnRLcu2DsbwWR/gqd078OLiowjbe14ikM71cYkCrq6uwtpgF0U1eNPGxMSgaVNZLPFmwe9vxowZgjwIDgYkZJIIwe926tSpIpuPmmp8Tz1YvP3bYUSnk0D0C1gXqfJgFyLt6+0hQoqmfJRQmMFcskCi1r6JsCMZ6D5jDlq1aAoH6ViFBUq99s392Voq4OloLfrLNAYwxrHwx0V49MFpIph9OOIEWjVXigE+OeWGmLFbV6G4rU9DKTaTmvP6C0LihDGPx559Fa32NMOoYXeI90lOvF/YMdJCKxOSrjJaLApNS0LatrTJlWWNSuC6rAtKsTw0fYqQnp+/4Bc898RMaf/GYYWY7B3377//Vuo0SNkSqu6q0WLkq9g3UnctSGLsNXB+59M8oOxLsMPE5xeg67Q8+DVvqbW1FTxcOaMpRPFNFo/dLGjSenlVrjDWzgySoT9ozbEvzMGDB8vXUbWZJMFJyJQpU4RbKzAwUOfnPZ2scJHmBPTMeCophpmdL/xaau2PsRGLYmTu435y4RbYEUFtQpCflaG3qCI7FWbn5KGln3Oj0cI6ceqsEEDs3LH0Wb8iWQrt2pRmRVWnZs3BWb1Uhy2SZZOZmY3JE8fATrIa6EaOjokrf58NporZUErHZ6ngm5aWXinFnufEuCXJoLTXR2VoN7vKys7G9p1h6NC+DZoGB6Jli2b4aN63eGDaFOGOMwaYJIHQfXXo0KFK68ePH1/1ZzJSEJOQjJzMZBzZvgzzFqyEf8978faTI1D6U5vBtUlTadHx4cxjWLdvP+DSBQP6G0bCuTZo1qxZhb95M+oM7srQC/Pnz8emTZsqrONkhA89+8hUdx8RPVt7Y9fpxNpNJYpVUGkX+kmDoDSNhTKHsZZ0FOTnQqUsqJUiL6VM4hOyMbKDp9BKawygS4i1HQyKX7h4RbiZ+vfthUNHj6Nt65ZC8JCB8HKwxXBxkXBt5eTkQlnWQ4QimGs3bpH2ZY9hg/uXb34+8rJkiaZgyqQ7kRB/HWkZ6RXSdm+kpcHewU5nHRazvmhxaMcyxHlLEwk2r9KGMEqla6KauDg/xjslayXhehI+++p7kTVGAmGmGXu9G1P6vkkSCNMt2bJWE/bSD3PHHXdU+ZkTKz7FHTM/gToZNqD/I1j613foG1BDMZ4yAV8+/wSWHwfu+3Quxreq/0Bl8+bNK63Trn2RoR82bNiAX375RbilaIkwA4vw8fERigaDBg2qcR+tg9zgaGMuKr/ZrOvmM6pLxGc9Ot+LLvY5aOLpKPGM/skRHHg4E/ZztUaIr3HMSOsDnTu2w2WJNFat3SSIPzDAT7IQYhHo310M4OwKGBefIFklpZ6ETGkmf/BwBPJy82BhaYGNW3ZIhNNDDOYnTp1DvEQSmgTCVNkNm7dj5ZoNiIqOwdiRw9Cre5fy92PjEuDj7a3z3Dw93MVSGxRKv/nusAOSJRUtmk79u34r+vfpIa5r5oypSL6RKq6VdS3vvflSlRZMQ8Ak1Xg5S3zyyScrrBs8eDDWr18PG5vK2lFE4vlwrFofhtSsGzh1cA/2no6DR4cx+PTLjzGsuW4556KUE3j/qQfwzrITmPjSr/j14wfh3ACTvF27dlUix379+oksNAbWZeiHNGnmyPuEsTNHR0dRcMp1BMlj3LhxNeyhFHxivl97EttP30BIgPstN5Myt3aSZsQKqHKzRCBV/wYjChSplPB1AGbf3RWWjcQCIWhF0PIIDQkUsYjEpBSEBAWI9xgTOXAoAs88/lD5tqV9ys3LG0pxkLe1tRES7YuXrcLjM++v4D5KT8/AuQuXRIfD5hrtbElY7338JYYPHYQ+Pboa5FpoUTFQTouGAp2sePeQzk9YMxLOnLuAbMkyCQ4MEOnJxgSTs0D4ZWv6rtXo379/leRBeLfqjcdblQXSS3KwZf6zmDh7IR6z8MWBlW/CS8sQSTi+As88+iRWnFDgkS/W4Yvnx8AwZUO1B+sRGEwn19PSSklJEcHeS5cuoX379g10VqYHWh7qxAumf9NlQCKhYrO+5EFwnBnWNRC7TiYgN08penjUqhGUFooKMlGecKUneZDE6EHJy8tF/97NGhV5EHRBtWn1n2WuJg+iW+cOIhvqzLlItG3dQmxblfzIhcjLIragHRdh1lTvnpUJYs++A/BwdxONqgwFursC/KuuMKdbzlhhcncdUyu1iweZ2dCjRw+tLUugzM9DZmYOKj3bCnsMn/kUxrUCosJWYu/1im+f/PdzDL9jClbEhmLeqh34oQHJg2Bwt0uXLuU1ICQSajRRZkOGfmBzsQULFlRYx++SigVPPVV7aXx2fOzfrgkSkzP0yuwxNDjolEjWR7CHHXq0kbWZNEEymDLxTpw8fVbEK6pDE29PkWmlD9IzMhEdmyD2rZ191VhhcgRC6XbOHJmZpA4m0X/dpk0brS2LsOnDh9C1Sz/M33Gp8o6YwUXPg4LZEf+tPr/uI9wz+SXE+UzGhm3rMXtMmwbvPsa6FhIIhSOvX79e7rfft29frfunN1YsWbIEV65cqbCO1tw777xTY2plVbh7UHPYWRQjPSuvvHd2fYC/uIVZCfKyczCyR7BR9cg2FtBFNXHcKDg7Vt9tkHEGtauoJjg62GPq5PFCoFFGKUzuzjtx4kR5AQ8ffAZDGfgMCAjQ2tICHh4luHT5OD7/7CdEpmsOtMU4tGY5tkYCrqE90bVsApd+egUefej/cL3dXVgftgyj2lbdCrO+0bVrZXOamURMP5VRPagdxngR3VWaGSxM1/1PtaD28HSxw0PDWyE5KRV5+SqRUlvXKCUPBVJT0nBHR190aCYPZlWBdSEWFobz0jNGQXeYjP9gcjGQw4cPl+sVkUSYW818fV0pdb2mv40X1oZj3qaPMXDQSTx07wgEu5gh8tBm/PTremTY+OHdN55BM05Ai25g0efvICylGJ36B+Psmh9wKFNTbbU0Yyao21CM7d8O9X0b9ezZU1wnLTA1OKNmPGjMmDH1fDamBSZX7NmzR0w8/Pz8RPYVyeTpp5++ZVmIQZ0DEH8jG0v3XENoiLc0uJvVWa8W7pWti3MyMtGlqSvuGtiiTo4jQ4a+MDkCYQqvGhwQCgoK0KKF7gfJzLUtPvh9PYK//AK/LFmJD1/fWPqGuSO6j5qBR56ejYdHl9V15CXjclS0qCA9vupzPFJZJUWg99NfY1gDEEhwcLAgERIIyZIZRJxdMXtIJpCqwQnGP//8U66se/XqVZG5xk6Vuqy6m8F9Q1sjNTMfW04kIjjQC9aWFgZVS1bTkbWlGfKzshDkZoVpw1rrn6wlQ0YdwaTSeCnnMXDgwAo1EFTGpBwFtYqqQ3pSHG5IFgUD6uaWNvDw8YeTZklHsRIpCbFIzyt98HXp3BC2Lp7w8XBuEN/fypUr8eCDD4qMLKqPUnKc109XFslFRmVQ74oZeppSMAR11KibZigwC+uvreew+kA0PDzd4ORgI91DxTfXtVADpdlWZrCSDOzUlHR0DnHGtOFtGk3V+a2AzZ+YqmtbTXZmbcACv5QbqfBtorsGpDHCpCwQDgYJCQkV1vn7++uIf1SGi5eftFSzgZkVPPyawriyrCti1KhRgiipA6YGSeSbb74R2URyh8LKYKKBNnkwIYETEUPCzEyB+0e0QZC3I/7YFomYzFx4uDvC1tqyWnmNqsCtzYTshmRF5eehqLAAI7v4YFy/yimnjR2JScnYu/+QuP+pVsvYx6XLUYg4fhojhw8SBFKgVCLyUpTQyGrRLKTmnUo4cz4SxUXFaNe6pdCeKioswobNO0QKb4d2rQ1+HTxnVtE3l86vKi0vY4NJBdEpgEcVWk0w+8rOQC0rjR10vUyePLnSelom27Zta4AzMn6sWbOm0rqhQ4cKK64uMKBTAObO7IU72rghOzUN15PSkJevLNVgMivt+1GVHhOt4xK2vWXBm/RKlZ+PgswMhLhb4ekJHTC+f3OZPHTAwcEeJ0+fw/ade2FhboHCoiJRud2pY1s4OTpKVkMa1qzbJAryFi1ejo/nLZAmXrqbhRHUs/rlj6XSZDURYeGH8O6H88T2tGYG9estenIwpddQUKkKRd+PiBOnsX1XGF59cy5i4xNq/qARwOQIRBtUTTUmbZi6xvTp09Gq1X+6PIyFkEDfeOMNxMbGNuCZGR9YbKmtmcZiU3asrEt4udrjsXEd8Pb93TCgpRvsoUR0TBLSUjNECjb7l5tbWMHCyqZ8MTOzgLV5ibA24uKSYYcCtG5ig0dGtcKzd3VGU1+XOj1nUwZ1sURNT5dOotp81579sLWzlSyNUrXqnbv3SevCRf3GM489KAZpDthVIepqNP5YvAItpc+PHj4Yu8LCRXU70SyUjamcEH7wqMHOnxX1y1auRY9unfDYzOniWuYv+Nlg+69LmJQLS5cCLYPLjQmsf5k9e7YofmMPCwZrWZkeERGBZ555Bn/++aeob5BR6r5Sy7Orwap+Nh2rD3DQ53IjIw8xiZm4GJ+BC7GZOBd5EZHnToo+5uwimJVbgCZN/NGzexd0aeGC4CZB8PV0gL9n9TUMjR3xkoVAtw9Ta6Nj4zBu9HCx/sDhCHTv0rF8OxYLUhqE9TJNvL2kSZcTrkVXPdkKDQnC3HdehaeXh+itTiuG+lpqtGzeFEcijgt3mSFAbSsek5YI3W8hQYHYGRZe8weNACZDIMyi0UxhVYNNfhobGEjn4Mh+8Jp9u1evXi00whgTcayhgKoxgBpi2q1/WfdR3/ph7s62YunUwlsE25f+fRGL35tbYZv77puG1+6b1WgUdW8Vp89dwD+r1mP4kAHCQqDeFdvQMtbB4Lm/hjQI28FyIShvQhmbPr26VblvusT69OwmiOjHX//Cg9OmiI6Bavj5NsH6TSkiXVu79ueKZL1cuHi5wnrGv3jPcb8sRiRZaMYrKWPy1qvPi9fUwTp55hzGjBh8S99PfcFk7lZmHcXFxVVYx5k2+zc0NrCAklYIuxVqg61ZH3nkkUrfVWMDkwtYdKoNiik2JBhst9SR7MC4h0we+oF9zb/4+gdhZXCgZ1ZUUIC/GJyzsrKFFLq9jrgopdL/XrEGDz8wtYK6blVgY6i7J90piIRuJjW4/4ICFVJTK8uk0JqglcNqdf6rXrw83eHh5iqaVFUXx1q8fLVk4YQKcUdTgMncsawmpp6RJkgeugbRxoBOnTrhq6++0ikgSctk4sSJlTTDGhNorV68eLHCOjYG6ty5/rpJVgWFDumRIgPWjdzuEFZEdg66lbmpLl25JmIThLr+RqGV9UbyWPLPaowcdgcmjR2JmNiKY4km6N5izIM9OMaMHCKsiiXL/isMEwXMRYXIL6jccpi1WU6ODoIonMoWusyYVVUg4l+FVWbkrd2wVWSMvf7S06JJliFrieoKJkMgtEC0/dnMpGnMfcHvuusufPLJJ5XW8wbn4EkSee2114R+VmMDq/S1U747duwodNMaGrq0t7RdbTKqBsmAAzSlzRkH4QDPOAc7FbLvOL/LrJz/GkoxtkDJ9kJVkbAMlv6zRiKIUlVm9uFgIypNLJWslI8+/6bsL4U0kBfBTMM6JBFwoPfS0feDx87PLxDNq5i5pV6YnsvW1IU6+r2QT7bv2otjJ0+jbasWOBpxEstXrTfAN1X3MJkYCAdBbUYmgdRVOqapgIFzKrO+8sorQmSSr6kPxtfUyfr4449FbITbUftJV3vc2xFnz56tdL906NBBmhE6NdAZ/Qdd9TqmMNs0FrRu2VxkWG3dsVf0R6cYIrv30VVE15WvTxNESxaGus3t/oNHsHbTduHiYnA6VyKg1158Wry3d99BxCVcryDP3r9PT0E6e6T3Ll6Ogr+vL2ZMnVL+fvz1RHh5euqcCNDtxaU2iImNwx9LV4r4Bzss5ublYdTQQTq7GhobTIZA1PpXmqD1YUixNFMFM7I8PDzw/PPPC6LlLIiy92pQ+p26Tz///LMIsk+dOvW2ztTiYHz0aOU0y5rUCuoLugYeJkPwvE1h0GhoMIg96+HpOHsuUhr4O2LwwL4SgSSWF/d1l8jg+Kkz5dszpvDp+/8nvlsmMZDA/cqyqpg2u2T56grKE4yrMLB99vxF0WfknkljRQBcjZMnz6JdW8P16HBycsAbLz0jHd9MtL0lvGtJQg0Fkxl9danONtb4hy7cc889IiPtiy++wNKlS3Vuc+zYMbz++uuisRID7ZTyuB2/Qw7G2gF01spUpZlW3+C50HLmQMZBi3n/zNKhi4PSNDJqBl1Ymg2fGKRWgwHy4ydP4+q1GARLBED3FhddoAUTGBhQKbAd4OcrFm2wAVVuXgEG9utloCuB5hVM0gAAIABJREFU6O3OxRRhMtMd7fgH4WyiX3pdgU21fvjhB3zwwQfCItEGvy/OwiiFMnPmTIwePVrUjdxu7hPGPrRTvum6MxYCoQVCwuBCMuG/tBoLdARlZdQebAs7/s4RoithRmb1FeOsDRmkJxnQxXTwyDFMHDdSEJgMEyeQ23H2fKtg/QetjJ07d4p6EU1XFV9najxQlIKfMWMGJk2apNPlY6o4c+aMSOPVBONC+mim1Reoz0VlBRbHMuWar+VAuuEQ6O+HEUMHVdvmmmjerKmoLNcHLFgcM3IoWrdsZohTvC1gMgSirYFFyARSNejv//XXX0UAne4tEgvJQ7PwkKDvl3pRlDf/7rvvyrsdmjIo+U+3kCYo/2IsOlJ0U2kH8/m7yBaIYcEUWkOKEjLe6u4mS8powmQIJFPLFKX/WCaQmkHhQMZE2FRpxIgROquwObDS/85MLVok2uq1pgZNuX812rZt2wBnohskEG0BUN7f2laTDBnGDpMhkByNvG6CBHI7ZxIZGuyJwcZKVO6ltaEJxkvol6cL5e+//xb1JdpFeKYCXoMuyZuWLQ2XNXOrIIlr37sygcgwRcgEYuIozstAfEy0GDRj4q4jqwYP1MiRI0UzJVolrGYn6MbSLLoLCwsTqb6mSCJUK9AunCQ5GksAneB9y5gMrRD66JnYQOKTYyCGBQv4VDoK924WlImn1LuM/2AyBKLtm+dDV9+ieMaFPBz450tMHdMPoYFBCAoKQmBwSwye8AB+3HgK1T029OUyLrJ582bMnTu3UlyEYFD94Ycf1pk+3VBIubhX1LL8s+kIqurmQCLUrhlierMxuTspqcI2BKxjcnFxEb8HBf6oqiyj9mAq7q69+xEWfliIKhLXpXtg45YdyMnNLd/uWkwckpJrdz+T1FloyJhaQYES/6xeL+Te6xLx0vGY8WUKMAkCIXloB0VpgdSUYXH7ogh7f3gRY6bMxrJDuZgy+x18/fUXeOn+fojc+Dtm3TUBX2+NrHEvTG1lH5Hvv/9epyglLREWJxpFmm/qSbwydZyoX3n23b9QVXImCUQ74YKDtTGpEzMGwoA5M69oLfH+phWorfUmQz9wLNi6fS/+XLqivE/83yvXoWlIkKivyM7JxdqNW7E7LBxfLfwZv/65TBpP9LunSRg//PKX+H1Y8d61U3usWLOxAjEZEqfOnMf/PvoSaTqShowRJksgDPzqquhtDFDGbMdLzyxEqkUb/LhpF36fNwdPP/08Pv3lX6z59hFY513B51+uQmpRzfsi7rvvPixevBi+vpULp5YvXy7iIg2LLPz01lP47Wg62Arc2dGuyhuXg7K2WB3Td41tsqFLkysqKqoBzsT0wTRcK2tLaXDvIJrL7T94FCXSpKdTh9LECXYqZJOpu8aPwfR7J+Gvv1di647dNe73elIyNm3bhczMrHKFgI7t24g6k8NHKis93ypo4az8d4M4rrmJKBKYxFnSj6lNIPxBGyuBFClsMfzRWZg971NM7adZ22COXqPvRhtz6ea/cB4ptcgKZbbWkiVLyrWyOKsjodBNOGfOHCFO2FA4/tc7eHbhYYyd/gR6uAO5yqpnj7qajtECMTb4+/uXv+Z3zXtZ17nLqBqMR0QcP4VzFy4i6loMWrUIFevD9h9Es9D/+gTZ2FiLwZkWRKsWzeDm5ioUfasD9aj2HziM3t27VhBSJFpKx4k4cdLg10MLKTgwQMiYGIXVrwdMQspEF4HQAmlMrWw1YevfH+9901/nezmpMUiWviqXkBC41pJfBwwYgI8++kgIM1qKngcFwh1EXa358+eLpb6Re341nnxqHtzHfYL5r3fFk5sXoki3Gra4R3RlYBlTAaEa7IxIKyQtLa1c2oTxJlkPSz/ExMXjzyUr0a1LBxw5dhI5OXlo26YlVIWFSJRm8JrdAocM6oc7BvQRrynVnpaWjo4d2lS7/7D9h9CiWSgcHRxxViIozRqiQD9fbN2+ByWig33F2iLGLyjkqNBqKMVOg+ypbidNyNjdUFtQkz3d+dv37tEVe/YdgJGULNUIk7hTGcjSZuTGTCBVouQ6fvr4Y8TCA48/MQmeNzE9YB0IK9gZS+CApnYHUfJEV4OmOkXeFbz1xMMIt+6Nn759DsFORcitJjuACsTabiBaUMx4Mja0bt1apE+TLFJTU3H58mUhMdMYpfdrC0qlf/rlQtGvY9jgAfD3bQJ/vyZwc3WRJjyZIinB0cGhfHv+TQuPE4w/lq7ApHGjMHSQ7gkYQYsmXdpPO4mQSjPjSioQgrBolEppYpVV6bOqwiIhN6+9MCNMSTl3HZl2TAKgREq/3j2EK46PHIUVTQEmcZaOtpYoVlXMSihS5sLJTiaQcuTH4etnpuO1ZRcx5sV5eGXCzSnPcmZEdV8/P78K6znI1W8spBirP3wO83bl45VvfsIIPysUZ1eVe1UKWkzaAzBn9rpiOw2NwMBAkf2WqxGMJWHfTpIydYUzZy8gLj4Rffv0EH/TfaVuOau24LRVBzh4sw8IYxiPPDBVtL2tClu27xYpu9TSOnnmLFJupIqeIeXNqsoKb9mjSBvsOtihXRuhDKxeOrZvKxpeebq7iep47XMLP3hUuNjOR16SLJ/DgrwOHTmObK3SBWOE0bqwcgsKcexSCi7GpkuDQhKsggbAxzVDGuDMpB+3WGJqa3z77zlp9uGJzs080MK/8fYFybkajjceewRfbbmGsa8uwk9z74fzLUwNgoOD8fjjj+Ott94SN7u6aRclTygLXx8DcvSWT/D0e+vQ55lFeGdKqbuhBNXb9cxiYkEe6yw4u+cD36ZNG6MkEM6Iu3XrhkuXLonvmOfM9F5W0Y8dO7ahT8+okZqWIVkbzkKSPV36va9Gx6KDRAzs3UHVXSbd5GoVZa7dsEVYAaOGD8aO3fuEFTN+zAiclsiIFkVzjZgJt2FrXHPJcsnIyIKZZA04atSc0U3GTDoPj8qp4WnpGaJfCH9TbaIolsYtR0d7IcSo6abs0qmdkKjnOrrFbkiTNUq8m5mAFWJUBFJUXIKTl5Ox8XCMRBxpyMgtRLEZzU8L3DHtZdEzulTTv1iQyKFr2dh/5RpW7YuCp5M1erT0woAOfghq0vBNg+oL1/b+iscemoXNV5vg5YVr8N7jQ2AIQXAWEjKozvoEzrQ4u2eTph07dmD69OkGOELVyLu6E088NQcWo1/Byq9mQF3tY+7mDEvpmTSztIOuPpTnzp0TBMLBmXEbkXopPfjG0ERKFwYOHChqcVgLQvkYftf8fmkBakudyPgPoU2DRBzh8NETohshZ+83UlJxPTFJEIGnpwdi4xNE4ymCWVm//LEMri7O2Lk3XMRAXpn9pBjg/1m1Tgz6X332Xvn+2ayKoGWjJgKVcD2VEkJiUgo8JGvCVkdmn7+fj1hqAzbA4kLL4/jJM2K/TDM2hTiI0RBIxMVkLNt1EaevpcHewQ7Ojo4I9LAqJQ1+k2YKTkHLYC5+Syd7K0EmKunLzslVYs3heKw9cA1DO/lifP9m8Ha9vR/C8xs+x5RpLyHKtR9+3fkrHuxvOJVQBnk5wC1cuLDCesqh1C2BZOPPz1/BhktKdGmfhx/+967wKxMlKRdxUZpYpl/cjJffViGg2WDMmjGonGDUmWKcgaoLT42BPBJPbcGf647CzK8t7rtvHLzLnrrevXuL87x69Wq5e2TPnj1CTbh79+4NeMbGjdCQIDw2836cOn0OA/r0QNfO7UVHQvYBIbp0bI/L0sRyWFkcnVYJOxCaSWMIrQDGRNq0KiWXB6bfjRWr11doKKUGW9OOHjGk3DIodY+Zi+OySZWhwVhJ82YhePfNl0RwnqRl7KXSDU4g2fkq/LjuNHaeSICVrQ2ahfjAWrI4aI3wR+VSxKhSNVltlhLJuDrZwt3FXjR72XwyCeHnkzC+dzAmGHBQNSbEhf2A++5+CdHNp2LNqt8wJNjwKc1jxozBTz/9VEEO4vDhw4iNja2QhmpY5CDbwkrECOJ2L8JHm1WlQUVzc5QUKlGQLxFJ7EEs+Pw4WgyzwwMaBMJAtDYaVMJElYp/F76PF976ApczpTlQm3HoN+U/AmnevDl69eqFbdu2CYuDbjdaTj/++KNMIDXAt4m3WNTQdEH1k0jl1JlzIhuLPdAZbOeiC3SJs+mULuiSbY+OiUfyjTRMnninjk/cGujG4mJKaFAnW9T1TLz6/T5sO5koDRheaBrgIc0OzIV7SrsYrCYIomFnNxtLNJX2ZeXgiEXbL2P+PxHIy7+9NIYK00/grWdewrGSNvjkyw8xyL8EWZmZwn3Dham3mdk5KLzFVHJaIJQB0QRdLfv377+1HVcLLzz10RacOnUKF6/G4vr1RCFNkpRyA/Fhf6CPM+DT61mcTUrBwaUvQLOlmHYKL2eUDSWimHP9OJ4fNxDjX/gLIf2Go6kj4GjvAAuNSS4zxNiLhf50BvvVMZx169aJ7pEybg520kR09IjB2BN2AFnZ1QeiMzOyRA90faT+GTehZMrIYYMqdEBszGgwC+T45Rv4eMkRKBUWaN3MR3gX9ZUXqA7seUxfl5ODDextvbHrbDKS0g/i5Xu6wsXRuKqRbxZXN/+AX48zhfAKPnx4KD4pVklkUZFwzVxb48vVqzA++OaNYAZ1+/Xrh8jISDHI0fSnqCX/rjsoYGVtLy063nJ2FAOwwtIGrvY2FWI9PC9tLSlmlDEhoCGQeGYT1p21wwerduOFrnEY020LYlWVJ0VTpkwRbYgpXMnvmIWcJJHXXnsNK1asEL+BjNqD8Q9WqJubVz9Hbl/WR10fsDp8YP9eCAqoK+vb9NAgFkjU9Sx8svQoFFa2CJWsBfooiotrZ3HUBO6PPs/QIC9EJhZg3j/HkFdwe1gitj5dMHPaNEybOg5d2rdBuw4d0blz5wpLp3Yt4Wp16z/vkCFDRFCamVhM7eWgTDdWQyjHFhXkIzMdyMjMgbboMLv6aQs/soVvQ2VgeXaaio37tuL1sa1grcxBXiF0BkXptnrssccEUXh7ewsXFpMWtmzZIjpL1tYSl/EffJp4i8I9Q4HPgUweFVHvFkhGjhKf/R0BlWR5hPi4isBUXT0j6sBYUIAHzsUk4beNZ/DEhI51c7B6hN+AmfhJWuoD7du3F/55TaE/WiCst6i7OIhumAX2wrw1y5Ht3AraoXHKgGg3wmrWrFmDiSg6ugeh/MhF1Scgz5o1S2Rjbd26tcL633//XTTCYkq1DBnGiHq1QIqlAf23TWcRlZyHYH8PEbOo6xmW2H9JMfx83LHjVCK2Hrlap8e73UDfvFofSw0O1tqS6fUBhaMPBo6bjDED21VKVeY5acvSM35jbCKKukCSo8tKnbrLSQ/lV/jvSy+9JOpvZMgwRtQrgZyOSsWWiDiEBlaWDq9LkEMsLczg6uaMNfuvIi2z+opmGf+BMu/aYoTsnGds0uO6hAhpgWhrDhkrBg8eLHqzECRskiGTIRjbYathXW16ZVQPejeKDChKSLe43PSrIuqVQBZvvwA7e1vY2VrVu9okf3xnR1skZRdh29G6bQhzO4GBXV1ihKxdMBbwXtKlFsw0WVPCc889h7ffflvEQZKTk8vXU6L+448/rtRUTUYpKLfOPhqUAlGVDfAZmZmioRT/VYPyJaxGrwnaY5OyTMyVE6elK/5FUrJhG3+pyxU0/9bnPI0B9RYDYaHguZh0BAU1QWGxno0qNKAws4SFlRUUKEZhQR5uJubOH8bLwxnbj8dhSNcAuDkZe5mOcUBXrMOYpMc54GrP0KsiPmOG2mXFFN61a9eKdUwEoBtu48aNop/9vffe28BnaXzgAL942SpRyf3lJ++KdX+vWIu2rVvAzcVFvL93/0HExCYgOiYO3Tp3EGm+VYEyKD/+uri0K6CitD7jvikTYG9vh5CgQLHvWQ9Pg7UB20ksX7kWZ84zE88KNtJy14QxJhGwrzcLZMexaFhY24giQdRq8FfA3MoO5iWZSLxwCNHnTyFHWblqVB8IWWUbK+QVKnD0QlLNH5AhwKI+ym2wLSz/Zf2CMbVfZdorNaU0Qal0UyMQgvGQb775RiQvMP5EKRZKvjPmtGjRItkK0QHKijg62EuE0VIM6idOnRWWB6XRiZ2792Pnnv0YI5HGkEF98eW3PwpCqQqc/VNXK1GyNCgrwv2oew/16dlVKPEeO37aYOdPi+dabDxi4+KFi6xPz27w8zGNgsJ6sUBSswpwPiYDrk52tSMPhTkspR8wP+EIDi77DBHhEVBaB2HkO3+jU4C9NLO4CX+kRCLm0s1w8Nx1DOseVPvPN0IwDkLyED7lsr4sHNCMpXcFCwgzMys2uSV5GA2B2FoLJR6YsQ1zzZuTsOmyuvvuu8v7hfD7P3ToEPbt24c77rij5p00AlAxNyoqWiJZW6GJNVWyEogde/YJdV71vckCwOjoOHh6uIuFkyDqaLGAUBdogQzq3xt3T6osaimKU5s3xZGI4+jVo4tBroOERHmWRx+cKlrwmhLqhUCiEzORnKlESKBLLbKuqIGlROzen7H9zx+QnG8NWwcFlMXmtywyRhPxRlYuUjPzZDeWHuCsmGm7mtLjDKIbC4Ho6lPCDCy6sRoGJYiO2IOIa6kws7JFScxuJOVJA96NKGxcvgFRNioUFFuiVe8BaO2lu1CQJEGZE7qzmAjAYDrFFmmFyARSqnr7x5IVCA70x7nIS0jPyBL9O3hPxsdfxx39+5Rvy54h/cuk35NTbkifTReCjFXB0sJS9ARZsnyNUMZt3bKFsFzU4DFZ5a4LjLNQ/l27oRR7F1lbWQpLhn1LNJ8bSwsLJFxPxB9LV8JK2o4FkBPuHCncWcaOeiGQmKQsIYZobW0pmWj6xT8UFtYoTt2PHYsWQhk0BffcOwaXlj2GQ+dvLfhe2h3MAnnSKV1LypEJRA+oXSmaBMIZP60RVqc3NFjYqI0G1cBCETa8/yieWHWx4uqsfXjx7jHlfz6/5iy+GKe7Eppxj5kzZ2LatGkVgrqUkWFvFlokjRUMlH/+9ffShDQAY0cPE2Ti4+0pdK84gHPwpmS6Gmxly4VgQ6kBfXsJyfaqQNXegf16oWvnjkK59+33PxMy7D26dirbnx3yC5RCJoWuM00kS+Rx+sz5MhXf0nVM4HGwtxPnxH4gJIgKBGJpIR2rgzh/H28vzJn7mXDBzXqoblWvDYH6sUCSsmEjMW+taj6KVSi28ELXB+fDv8sQeJlHIbLIMCl0rFDPyi/GuYtX4WmdC4WZufhBuXC2x9kCB0b+21j7rmuCVdLa3R8psEiJ94ab5ZeCMYHTpyv6o/kbdujQoYHOSJwBxr/3F1o8re5YpxD3HFHCwtmybYI6Vu9CHTZsmEihpnglCZykwYSBsLAwjBs3ri4vwKhx9nwkzpyNxMwZU8VAzf4bTcssCsYQ+OxqW8Yce/5dv0U0fHp85v0opiu2io6mbOTEYDkHfVayc3/bd4aVEwiPSbcTyUWbQJoGBSDAz6dSq1uh1VdcBHNprNFOLafqL60S9jfheOPh4Y6NW3bJBELwYUnNLhAiibX6XHEhzOxC0bp3G+mnKEFBToHBzslM+gGtbawxe/Zs5MYchoWVbTlZ0N9MCXD6oXkT0n1DiQkGZSk7wfWUx6B/vbGQC78TbQLhg0rJjYaWS2f2FWVMNMHMJcq5NBwU8GnbXVpubS+UjyFRsC8L03pp9ZG42bWwMRNIYmIy3CUiCPD3FQP5tZg4DB8yAHHx10UrCE5suGiCQXS6lqbdO0lYCOwdMmbkUMTGJQhXkZenR/m2azdsxfFTZ/D5h3ME8bPfiLPzf65GWt50Nbm5uVQ6tzj2RI+JL5swaDWUkgjEWXpe2rRuIdxWatAF98GnX+PDd18XsRsSCi0eU0CdEwgFErNyVdIAZH4TkiUSayvzoTC3MeiJ8me1pOqvdPNl5xaw/WGlbTjr01VtzdoCZiFx4GTPjB49emDAgAHita0BdXeMCXSnaM+a1HnxDQ3GP7Qzwij/QdK/HUA1Yfan18TJkyfLZ9qNEWzYxI6El69cxakzF6Tf/ways3Jw4eLl/2/vOuCjrO/+N5fkkstOyB5kEELYewiCyAZFRavUbdU6arW+2rfLttq+2mFtrW3dCwcVBBkKiuy9N2EGCIGE7JCdXOb7//4uFy7J5XIJmfB8+dyH5HL3f57nP357YNIN4+Dr46O0kkzE1fbs2H8oAW+89YFiyH7Ys/+QEPlnnnxENIkP5v0XpYpgv/ryC3XjD+gfLz4JjnvoyHF1LZNPwozs3EvooTQGD/fGRD6qZ4S8WoIQtVf7xcdJ2PDR46eQmZmFRx+8p5Wz07Fo9x3I8iUVldVSybKF8bvtBt4FG1UZXJruqU4GwQiYhmGTJJpMoqMkSFMCnZpkKtRQZs2aJRnFV1svB5bHdmxgEqAJoKILhJTu37+/UeIXnc8NNabuigEDBgjzJsPmM1G7ojOdpixqxNciSGwfefBuaUc7sF8fhP/sCdEuRo80aZ2ssHsmKVkiqQg6r++/+07RCijQOilhdvAAU5vkObfMFI3DsqEUTVXUEL5euUb8Hb/++dMIDrpczoc92XvV9mBvC7Dh1aMP3Y11G7eJYPDjh+/FoP72VwnuTLQ7AyHhcXd1Qm5eZe0CdT4T4W2wy11+YUmTnyFRspYtTwbCA23ZZInOZXaS44sH/IEHHsA999wjhOxqAAWA6gb+J/5e2Qbl968ENOns2tU4nn/0aOvhmd0RTOJkXxb6efi8PENJSUmidV2rDIRgR8CmugLSAf7eR5+LI5omI+aH8GUNbI3bq1dUo/eHDh4gr4bIysrBhdQ0PPxA2yZ0RoSF4qF772zTMTsCHcBAHODtocfZ7LbzYVwpKG2Q00fHRKPGxyjMhL/zRcZAJtGUBMv6RJb1cKip8D0zyEw++ugjebHXw0svvYTIyO6Xb8LAh5TMQhxNvoTE1Fz4DZgFp4gcODk5i/bh4uKGj9ZfwMhMPWKCPRAT6o0An45tIcxs+IMHD9Z7jyXnKbVfLaApjj4oahzUhlkji/4QhlHHx8d39u11STDK6cYJY8XxPWPajTZLujMzna1w7UlMpr9lzYYtGHfdSPQM75w2AV0NHWJEDfFzw+7EvFZlj7cHGAnjoqvB7373O9wwKAjlFVVyOM2RRYy5L5coi0vCHHhgzf0maL5ibD4dyAQZjaWZiyGvZDAMtZw3bx527NiBV199tVs4PalwbTyUiq1HUnEyJR/5ZezwyNIKzhhx86Nw1jvDSWmULFBXUVGJnKJiLNlxXj1/BYK89egdqg7u0AiM6NMx/octW7Y08sMw+qph8cfuDEa5UUhpaEqlFqKhaYwcPkQYSXNN6kYMs7+9A+nGwP7x8tJgQocwkHB/U9Z4S0u3m8JrHeHgqIejknxN/McBOvWzo5N6r0Yn0VotLczIuGwfN3ZCjERgkK/d3yNjMLeNPXr0KDZt2iStVykF0y5NMDLLsi/FyZMnRRP5y1/+IlFfXRXbj6Zh4YZEnM0slpo/Pr7eCDboJXrOVOyNn2Lvlio46xTjdKFp0lOtiZfk9hQVG7EvuRg7Tx1A/3Af/HBSb/SLat+2n0uXLm30Hv1PV4v/wwxrtcisFY/UUB+9Y9tWkGAwicY86qNDGEhoDw+4qjNdaqyAi7OTfYxEcYuq0jwUUtJnFJYxTWkH/F45SrJTkOdsEM3Byd0XrgZXONjJnMiESsoqoFOMJzqkZe1CGfXCWHy+2Cr1pptMSWG0w7MZ0KpVq7BzZ+MMVUqPv/3tb8V38swzz7Tomu2NrPwyfPjtUWxOSFcSmwdio4PhrO6zhv+kfHXjxE/TVF+eb/J1L09XqXZcXumFxOwC/P6TPZg2LAwPTO8LV33bbzP6BOhAtwSl9SlTprT5tTobwcHBQrwYUs58EMkpqGp5QVINGtoaHcJAaB+PDnDHxaIyBPl52BHO6wAngwGpa17Bsi+Xw+igUwyiUswmQCo2/O1ObHV0kHGibnsFN912G5wrCu2q0Ftd4yDmq55KK3J3bRtJlU5bvn7605+K7+Pf//53Xblzmu0Yz08mwkqrNEc89NBDbXLdK8WplHy8unAf0vPL0TsmRApdUuVvaQ8F6UJf24uePq+IEF+UGT2xcl8azmcU4unbB6t1b9u4dmofNBNaol+/fhJWfbWB/UGoZZtNq4SmgWjoCugQBsKQ2f5Rfji9+yLgZ5/UX11ZCUP4MPSf6AxxWTvQdKWXonRVFeUSHkzJ1y8yDA5V5XbFdkljKWcdCgvLMDK+7Usls0jbc889h5tvvhnPP/88VqxYIdoKExJp4qLkyPcZ23/ddde1+fVbgsNnc/DHT3dDp6T2vrF0CNY0ay+2FxxH7+yI3tFBOJ1+CS/O24Vf/HCYEiQaJ161BvQ/sbx5Q8yZM6fTM+PbA4y24h6yLCXDHiEaNHQ2HGrau6dsLdJzivHcO1vh4+8HN1c7ypqov+tcPJotKFZtLDZlndrjoOdnqirhVmPEz+cOh7dH+xEbOncZgfXmm2+K5GiJ4cOHC3OhaaIzcCatAL9+fzucXA2ICPVTU1LVLsHVpgK0OlzMyIevvgovPTQaPdqg9tiyZcskVJrMmYENjEyiaYdh1J1bwqR9wFpfLGtiGe3Xt29f8cN1lcCUzgTLr+fm5UnuBjPUaSomTdi+cy8GD+ovZUIIlijRt6I8EYNEWK+quKQUq9dtwrRJE+Dh0T6Z4uxdQtrYlr1G2hMdVko1uIc7Jg8JQ1pGnlpgOy6rDkZ1eTFKCy/ZfDG0zt7yvDSvlBaVYNyAkHZlHgSz0v/0pz/hjjvuaPQ3ZhL/85//bNfrN4W84nK89uV+VDs6IzzET3wc7SVBcFxqI6FB3sgsrsFbSw+J3+pKQNv/22+/LRodqwXQL0Cn+a233iomrKsRfMaGWedkmuZIwGsdzPd4671P8Mqr/6rrSLh4+Ur2uuwDAAAgAElEQVQp985ILOJwwjFs2LwDH362ENt2Ni6+2RR27T2ADz/9QvadqSijGxYu+aZdfFC81pKvv8OS5d/hXHL36JraobW4bxkbAy+9A3LzS4SYdyQoqdVUViDY2xkTh3ZMnwhKQm+88QbGjTOVgqYZgvZsSs7UTBYuXNgh92GJ+WtOIDmrFFHh/h3miCUTIbM6kFyIrzYlNv8FG6D2sXbt2tpxq6TMB6XNuXPnXrWlPeg3a6hp0BdiadK6lsEscS9PD/SMCIOriwtOnz2HCykXccP118mZO5xwHK/87d/Sx6NPbAz++OfXceTo8WbHZV+QD+Z9IaXdOQ7XgKVSWBKeWfBtiXUbt2LN+s0YM2IoTpxKxILFX7fp+O2FDmUgAb5uuG9yLNLTc2GsqO4w9btGamPWoKywCDeNiW6XqKCmQL/I66+/LgUYactmrgnDfCk9/vKXv5Qw4I5CwrlcfL8vBdERAVfcU6Wl4PVCFRNZvS8V59Lzm/+CFdCE88orrzQK26Y/iSVkrlaQgTDqj0mFfFEAoVaiaSBAWnqm0kAKkaQk9v7xphL+NDPFREVCrzcFyfD/vn16S8HEXtE9pThifn6hrWHFjLRl2y7p/WFp8qIpKy42Grv27Lfx7ZYh99IlfPrFYky5cbwwwbk/uBVzbpnVZuO3Jzq8G9DUkVGYMyYCySlZ8nt7MxGaUfSODihVau604WEY3kFJbpZgbsLLL78sUUNMTjT7f5hJzZ4PzCruCCzamAi9qws83F0kF6YjwWd2c3VGGRzx3c7WJcFRa2MSZ0M8++yzEuZ6tYKBAaJBSz5OjTBQCiI0Y12roNY5b/4ibN+5Bx9/tgDZOXno36+PzE/y+RTEKEZhRnxcLF76zXMyZ2+//xluvXk6Ro4YYnP8vfsPybwPGzKwXuUJgqXe2QHRGqi1UENhbS7zi7+zTwkZXXFxSSP/75mzyVIansUg2W99954DiAgPaeXMdCw6pZ3c/dP7YnSsD5LOZ0pkVHsxES6Ti5MOhXn5GBbji9njYtvlOvbg7rvvFju9JWhyYT7DY489Jm1Z2xPHzl3C4aRchAb5tDjaysHRGc6uHnD18IbBw0f976UYkcE+X5YFyLQC/b2w+1SOdKlsCZYsWSIZ/Wyva1kDaubMmXX5OFcreD4ofFBz5YtlTRg80LBk+bWC6ppq/Pudj5UWUYBZMyYrbcwD/j1M5d3z1HtksH4+9SP+SLQPJRyHo5OjONVtBfGQ4J8+c06KMZrbUFj2F2FjqJKSMmEWDZF07gJWrd2I7+W1SV78fbPSZg4cSkDi2aRGpmP2XieDCVIa0sxpNyI9Mwv//M8HVzJFHYZOMRqzlPpTtw3G28sOYefpDLXw/mJWaqswUu4NEjcdqlGQm4ch0T64Z2rnOlgpIdNxfuzYMRw/flyYB80RjNBauXKlEMK//e1vUtG3PbBm/3k4ODlLV8hqu+fZAY7OSlspTsHprd/j9NEElBoroXP1Q3C/iYgbPg4+buwyWY6GvQ+sQVp7qrXX6fXYfCgV902zr5cI+4A/9dRTYsIiMWX0GnNrOIcvvvjiVVtG3ww+s7uV0uENy5tcKziVeBZblebx1z++AIM6V3l5BUrjMNWbY64Ygyos2w9U1+YoTZl4PUYOG4zb73kUenUO7v7BbVbHX/bNKvgqJnMhJRXnki+goLAIZ5POIzoqorbTIBtKGZV2cQk9w+vvvb59Yi8XebQ8EtQcGVmqvtvQVyfpCH5+iO0VLU7/yIgwLF62UvqCuLp27bD0TvM6erm74Oc/HIFPvj+GFbtT0MPfR3F2g6gNVxJZLCYrvSMqlXRWWFAk2dC3jI+VhetssCQF62OxtAlNWYwkYlkUgozl9ttvx3333SclT9jToq1QWl6FxJRL8PI0oCVNWXSKeRjTt2Ddh6/g6PFkxTh84OHhivL8dJzY+iUO952D6Y/9GhEBBlRWtKBbpNJoTqr74cHWNRNMwXIxbOvKnuwE9wYd55QIyZCvpsq7ttCQ6FDKbmhauVbAhk3UIuifYMWE5Asp0qaWZiCWaqdmZlkte8HiZdi6Yw/eev1Poj2wi2BiosmMSo2Ffg1GV5kRHd0T5cYKJCothK+y0jLRCiJ7hglj4txzPbw9G+e0nTt/QTGdFDjoHBp1JWRHQh9vbwwa0LdeQymWXHF10df59sz0r4MyLK4InRq2Qi3h4VkDEBfhi8WbTquNUag4sbdaTBch+Gabry2YTWCOjg5CkBhplack1cgeBvxwRjxGxHdOrkVTYKb0Z599Jiathr4PbvzPP/9cyqKMHz8eM2bMkPj/K22OdOZiPi7mGREW4mk3/3DQOcOh7AJ2ffxbxTwy0XPisxh/0y3w93FDWdZx7Fv8MvbuX4qNK4biBw/OhYuuEvYksHM9Pdz0KCkvFWd6U8mFtO8zXPedd96x6iOaPXu2+I+uBZj2d/2GXmZfyLUIf38/eCqNjLkf+w4ckYq61Dz2HTwiUVJswZyelS0SPUGTEc1dbNh0JumcWDrGjzMJHm++N09+//2vnq0bf8rE8fI//RcbN28XZsA2tbraNWAPdmoK3t6NNWg67/lqCXop7alfn944cOiolJc/fvI0Zk69UWnWXd+v5/gSs906GT2DvDCufwg89TqcS83BpYJSFBSXQ+/kKNJBnY+ETAW1nF0OlU59RieJPvkFxXBBpXpV4OZRkbhzYhwig70798GaAMu7s+Q4E98sk8NIJGieIcFkpz3W1lq9erUkHbIaMJMTKXWSePCz9oatnkwpwJaEdAQFeNkt1egc1Uxmb8fu79ejOuJW3PTYL9U6ebBYCTyC4hEcYkDihjXILvJE37Hj4eGiExXdHrA7ZVpWIeLCfBAZ5Fnvb9Q0aNJjWZgPPvhAbP9sH8yQVTPBpNbx6aefitp/LYDb/zP1vOfPX84+57mYe9dcRF9FlYftBaOpyET2Hzgs5h52HuS5uP66UXBzMyAzi07sHAweaDJb06TEBMPN23fh1OmzmHvHLUpjMTEQJtEmnjZ1Mmzoi004ftJULimyp5wbdkJkf6P1m7ZLIuHwIQPb5HmoTQ/oF68EtZPYuXs/+sbH4q7bZzfq694V0WUC5z3dXXDr+FhMHBaB7UcuKqk5D0kZxTh3LhfOekfJXqefhDb0CrZTNVaiTL1cHGsQ4e+GvlGeosmM6hfSZjWu2hPTp0/HN998I/WxqHEQlJxo17Z0spGZsGggmQjBcGCWK2d4MJkNHcokpGRKPET0B9DfwtBDbkB2Y9uckKsYrRuc2Air2j6zR02VETqfEZj2/Huo0gfA18WIspJKMRFWlJdB5+KrtA6zmu1gdzInwYNapXPCzj0HUJN7TEl0hRJEQDPe6dOnsW7dusv3ocanuY9aGBMHBw4cKF0gOQ/XCopLK1BSVt/fwX1itDDTXEug4MiugXxZA53f8z5fiFKlxdJHQj8CQ2QpgDQkysOGDsSFi2lWx7F2jYKCQskzufvOW61+p7UgQ/zR/XOt3mNXRoeVMmkNMi+VSAmU/OIyFKlDlK+0kgqlbhoUI/E0OMNDvbw8XBDSwwP+3t3TkUon+rvvvou33npLbPuWyWFkDPy7ZbQNHYQVVghHbGwszpw5I5qJ2YlIQk2m4eQXi5k/eQ0hwf5Wv9skHHRSNp+FLKsqK2sz1h3h4u6KC6tfwPwPFiFoyv/hrgfugr661G4NhAekvFKHVe/9GunHNkpPavN9mcNxrYWo0kf017/+VZ71akZ2QRlOp+Zh1/EMnEnNR5FiHkmJJ1BZXio2/qrKaukG2TM6FgFKgOgV6onxSoOPDPYSE6MGKC1hm2jsUyZNsFkWZOeeffD08ET/vnHNjkkBbfnK1XKubr9lZlvebrdFl9FArCHQ101eVzMYXcMCjHSsf/XVVyJdm7vsUcuwrDhL4sow1oaF9MxZsuZOiw2dq+4uBcJIWiwp1FSjqsKCkCutwUVJc5cSFmDNgkVwChiP8TOmw+BIxm7/6AyKMSgtscpYIhEuliDzI+NkjowZfO4nn3xSGoCxYdfVigtZxVi9+xy2HE1HTmG51IHz9DTA4OWG4eMn1fODcK1Ly0oVkTRiZ2IeNhxOR6CXC0bGBWDm6ChEBHrauNLVj4kTxuLgoQSJZLLFQEYNH2q3xM86Vcx6Hzt6eFvdZrdHl2Yg1xJo52dCHJ3r7CnCvAeadDIyMuqKMVIqb2qzU/U1M5GGIFF24NeuQNd0cHSF3rkSKdvewbfvvo4c91GY9ZOXEKOk30oj4+FbEuVWI7ZkayGKfFazCY8+HmaY/+IXv8DkyZNbf/NdHCXGSkny/G73eZQo3h8U4I24IH+Zo5qaatOaVlegqrq8NmiE33KQHCcXxWD8vN3kM4XFRqw6lCkMaPLgUNxxQ294unWPonxtDQbhDLPDR9EScxFb444bM+JKbuuqg8ZAuhho62fCIV90sNP/QYbC3BFqHlTLmUxm2cqVzIOJZU1ZI8l4xAHdykhmnbMBjpXZOLLoFaxd8h0ce87E7U/+BnHRAahQ91HTwoH56QrpYtg4EYv3yaKIzN4n02Ar4Kutw6AlElPzpbhlaq4RocG+iPB0lSAR9mSpn3B2eW0bNvSqqtX+6Ef08nAVRrJyfzp2HMvAz+4YhH5R/tCgoT3QpX0gGuqDDIXMg8yCpi1qJ+bsZNZForOZjIU/08kqiWbVlShxCcPQ255HeFhgy3wgIPNwg0Ppaeya9wts3nYUYeOewtR7H0OIrx7lijG1ZvPQCVpQXIVDy99AZcZB+AUEISwsDL1795b8F7569erVipG7F7YcScPrXx2Eo4srosLY/remTUrMUBNlfk16ViGMxYV44qZ+uHFYz+a/qEFDC6ExkKsE5pwZc7vTyzk0Nfh+dzI+2nAe8b1CrLaobQoOTq5wLL+AbW//DNv2nkP8nD9i6pzb4OFULolWNQ4mbaKlW4hhvOdTcjBnRCBmj42Go5PTVa1lWMP6Ayl4ffEh+Pl7IzjAu3bN2vYaZNR5haXIybyER6bFYdbYay/kV0P7ovvEi2mwCZPUqRNHK0N4WQjOVUIYDQgN8pOe8Uy2srfumIODI5xQhONLX8T2vYnoe9c/MPvee+DlUo2qGnUdvYsi+i5wcta3KMvf3P421EePniF+cDUYrjnmwW6Qbyw5hIAgXwT7e5l6srSDGMcEOW8PA4JD/TFv7SnsTOiYop0dDe7r4pIScZibIwFpCt2994Ak/ZlxJZn7FJJ4jdXrN9f1HNGg+UCuCUQFecLfwxlFpeXwcrcvu9XByQXFZ5dg26odqHGNgVtVMg4sf0Md1ioLj4c6rE4+iBw9AwFeLnZlRvO7RaVG+Dk7IDa8bVrcdidkXCrFqwv3w93TAwG+HhKO257gmrgb9Cjv4YM3vz4qLRV6hV1d856VnY335/1XGMjvf/0/kvuxYtVa8SUNrXWks9zJseOJkl0+asSQy/WqrIAdDjdv2wm9Eo4qaqMaJ0+8XnqNFBUVY8nybyXRr62KwNLU/Mn8RfDz84Wvj3dt5QEdeveKQUhwYJtco72gMZAOQEXOGaxY/CVW7UhAUYWadDd/jLjxJtxx6zSEtk9nzHoI8DEgJtgDRy6WKonU1S5p10Ft4NL00yhVSqqu/Bz2ffUX6x90DMHUuIkIVoTJHgbCSzs51MDHXY8eXl2/VENbY96qYygw1qBPr5ZXRW4teB0fTzdkGCvx6erj+PW9Izu0J057IzQkWJgGtW/+fzEtAwnHTuCZJx+RmlMsvvjqG2/jZz95RIj1r37/J7z68m8VgY62Oh4TED9bsATZ2bkIDwsWZsGeIiTsM6ZMxOtvfoBTp5OkQVVbgHleazZskbBt1soqLCwSRvf3P/9eYyDXOjJ3f46HH/8ffHu0GKHh4fB0cURFSS4WfPQW/jl2Lt5U/8/obV9V2ivB6L7B2Jd0wq56VUSVsRiegx7FvX/+oW2G4+AEg4+73eYBXW1f+hF9uke/g7bEvlNZ2JyQjl7RwUyxabdWwtZA5h7YwxPHzmdi59GLmDj06nCqs8eGwdUFySmpmD7pBnlv1ZoNiIwIh0dtBWOWXaf2EBocBH8l5f/tjXeQmprWJANh7/TpkyfgrjtuaZRDwlIpbEq1Y9feNmMguXn5ktk+Y8qNUj5++YrvERDgb1NL6irQGEh7ovQM/vj001h50AU/fXMZ/u/xafBhLlhxKj7/81N48JX5eOo3g7Fr/v/Cv53D9ccNDMWizWeQX1gKP6WRVDWX+Md6W4Ye8PNsrpBjDaorjHZmoSvmUV0FF10Nhvbu2pJVW4Pz8+WmRLh7uMGgJM3KDmonbAlK0H5+Xli+4xxG9wtV99F9jz9329crV6Oiohy5uXnIzMxBv9ps8sQzSdI0yowhg/rjH395UbSP9z+eL+YoljBpCo46R+TkXsLmrbuk3/qIoYMQFXm5DTaLHy5bscrqdxkMYa1VtJi7akvBOzUojBmiGNvsmSHCPA4dPiolaq6/bmRLpqPT0H13UDdAefperDmQBwx8HM/9uJZ5EO5huO/Z/8Vb/1iOHRu343xBNfz92zeegSaLOeNi8Pa3J+Drzez+5gl+TXUlKsvbxmHIqzk7OaAgtwi3jgqXcv7XEo4l5+JkSj6iega3oBe9IjYGLzVvTe+NqrJCKSZqTy0y8Yeoec/NLsH2hFRMHt6yqrFdCR99ukAxjWw89vC9WLTkG+mJTsJOjYSh6v496hfaJHFev2kPUpTmwSx1T4/GpdjNYGl31qVjZVy9Ojd//9e7eO6ZxxFdy0RYSr6oqARGxZAaaihHT5zC3v2HRdM2+0g472x65evjpV4+Us7dshCqvjaIhP6WTdt2SVOphtWXuyo0BtKOcPKJQqw/cOpiMlKzgWgLq01xdioyStXm6R8FP/eOCYabMChUGkulZeYjNMi7w2zwBA9UtSJ0Id7OGDcovMOu21Wwdn8KdM56ODvr7Mv1cNBBV1OG1G0f4FxqHqorK6yy/IAhtyKud7TiJOV2+bYc2X/F0Rk7j2V0WwbCdrIrvluLP77wc6myS8IbE9WzttFTuUQhOjeoVK1T8zlt0gQMHtAPDz/5nPgbZs+canV8N3cD7r1rjpRT51rN+3wRVq5ah58+/pBpLJ0OZUYjsrJypEKvJQb07YO+cb0bjSm8xMFUSbypTp77Dx7BueTzTZrWuiI0BtKO0PmOwC9+9xMc/s1C/PSJZ/Hi8w9hQIg78s7vw3t/egl5QYPw218/jJ4dVAeS9acemBqPl+fvQ1GJK9wN9kVOXTkcoFPkr6igAHNn9L3mymtUVtUg6WKeknrtX2iGUTtWlSBp1WvYnlhe+17jejT9/EYhLj5OGIg9IJNxd3NFblEZsvJKJcCiu+FsUrL04oiJMflxkpIvYNSIoZJEK4U6FROprLqsOX/z7RrsPXAYf3jheXFK0yFOYk0GwvpWNClZljShaezI0RP41XNPKSZi0pSZnGuGuZ2CtX4d7MeepF6WGkjtt0xh1eq+GzaUMmP33oPdRvMwQ2Mg7QpH3PDkm3i7MA+3/fIN3P71GxZ/88ezHyzD725vm54C9mJQrwDcP7k3PlydiKjIIDGPtEX2c1NgmRO9kwPysvMwY3hEl2vw1RE4lXIJ6XlGBAa525/vIe4iRQgr1Q/6QZj13IsID3C1SARl604d9F4BqCkvsdsjT+JnMDgjLS0fp87nKgYS1ppH6lSwF4ebaAfVWL95G86cTcbY0SOwfdc+KeXu6uIqUUy9oqPk8xfTM3Ak4Zj8fD4lVWkP5Rg22HTu3nx3njAPRmiZQYc7NRkyiOMnEyVAZMbUG+v+nl9YKCYzmrIagn3ZafqyXjdInQZ1rab6+CQpzcrRSWMgGupQg22fvoDfvLMJUePm4unH5iJOEYGi1COY/85bWPTnn8HP61387s6Ore5589heuJhTjG/3pyEyIgAuzo7txEQc4OzoIH3ph/Xyketei0hTc11aCbGn25+176AYSClKS5RmYQiBf3gf+Aew/3y1qBE1tRyjpqqixWtH6biqxgGp2YUtfJKugaGDB0gV5+XffC8mpNtmz5DIqbFjRogEH9c7Rsxco0cMk88zDJc+kQ8/+QK5l/Lw1I8fxKzpk+RvbEi1beeeeuNPmzxB1umt9z5RGkolfvLYg+KIN+P0mXOKUYRZzQMhc7C30VtDhCvm42uly2FXhsZA2hElJxfjmaf+jITgO7Bl8ecYF2ye7pm4afJg3DJ8Bn7/1AuYOO5rjA/tOLMO9/1jswdKc65v96bAP9AXnm6ubWvOYjKUInIFOZcwOs4fd0+Nh5Nj5/el7wwYawMRxA9kJwMhcaquLkVJGWvf+0Dv4qaIYxUqyiugc3KBowNL7ZejqhWMX8xYrnoUlXXPjGo6runPKC4ugbu7GybClIynr3VoT7h+DBYuXi6aA4k5k/PuuHWWqf+5+p3fMWPGtBuVRlEkDMPMEDjO7FlTJYud2oilqYq9a46fOI3ZN1n3n1wJqAW1pKpDV4DGQNoRiWtWYn8RMGXObFwXXH+q3aLH4rbbIrHu4/VYfSJTMZCOdSzzsDw8qz8iAtzx6dpTKCl2U1KahzhZW6uNyCGkis4xFHErLijETaN6XrOahxnsKEjHKU0l1dX2R2BVV5ag1KgOqZ8RyZvfxPYjG3GpsByOLj4IiJuA/uNvRliwFyoV8WzJinGd9HpHFCsGQgYkjvVuCEtGoLeIhorqGY6+fWIlDHfC+DF1YbM+VqT7w0eOiePbmjZBxmMJCljskR4ZGY4hte1y2xKO3agToRkaA2lHVJZXiyWUpbkp29ffHpQg+W4Nyis7LhqqIaaOjEJYgAe+WHcKJ1IyJdTQy/OyY9Uuk4tI1oopujhJOYn8vCKE+ehxz6x+GBrXXB7J1Y+cwjLR9lpE5WlmKsuB4j2oTFqGdel+8AsMU9KwE4rT9uHAsS04vmc9Jj/+FwyI8Zd8CHvB29A7O6GQHT4rqhRDuvrIwIxpk7Bz1z4UFhXB19u7yc8NHtjfqjPcGljihFWO597RdmVMujuuvp3ThRA9dgTCdJ9h+/drse8XD2J04GUWUpq0G99+fwFwHYrxsT068S4h/SL++HAPbD6Ygu/3XkDyxSzoleruqHeGm0GvNAqdHBwp2MimVfynOAbNMazlJKYCxRBz8owI9XXBzHGRmDAkAvpu5hBsLziZJcsW0Jwapak4OPuj13VTUKQLRvTo2YgbMAjuro4oyTqBQ8v+jA1rd2DjFx8h7Oe/gLeTg/3mrBqTOc1Bd9mXcrWBuRU0ZTUHe5kHQY1n+pSJV3BXVx80BtKO8Bt9D154dCGefO+/uO2WKrzw9D3iRC9OT8BHf3sZq7P0uOXF32JSTAcUxGoGZA43DI3AqH7BOJdWgL2nMnH4TA4qjZUwKgWprLwKxeqHSkWkDHod3PSO8HBxhMHRRIQGRvtJdnnPIK9rLky3OfTwcpEGWi1BTVU5nHyHYPyPBgHsBql3UhqrEWUlNdAHDMSoO55FxvG9OHZyNc5e/DFGRHsrBmKnT0MxsnJ1P54GF0VoNSavofXQGEh7wsEfT/zjC3j3/jve/uhLPH3fQvMfEDl0Cl54+xn87JGb0ZW6vhtcnNE3qoe8iKS0fGReKkFRSTkK1KtMMRTaz5lJ7mlwhr+PAb1CfJQ0q6n0TYFVAOhXYntau0F/krNBEt5qKkpRbiyBWYWpLCuFq3sgeiimjdQ8FOSXqvm3v8IuRzEaK5Q2494t7e4aug40BtLecO+Ju3/+Bm750a+QlpMPujscdHr4BoUi0LvrV6ONDvGWl4bWgzWnSKebrT9mAVZDNmYl4mJuHtwDe8HH1wc1lSZnOQMVasqVNpLN5DYD3FgWpgUNRRwdHZRGWakYiHb8NVwZNPGjg+DeIwSxcfGIj49Hn7iYbsE8NLQNImjW0ztIOK99zlcHOCrtoyDhE3zx8gNY/Ol8FFW7QG9wg7OLAXoXHTISvsPJk8XQBY1CRLD9ZWmEAamXp16HEL+m60F1JzQV6HHsxCmpjdVWYFXfXXv2t9l4VwM0EUSDhnZGdIgXgpTAkFlslHIyzSsLNaiqrIL/sNsxYN0aJOx9C4v/kYVh10+AlwHITdyAvd8tQQH8MXLOgwjy0qOqvMyueyEDoznS190JcZF+zX+hG4D9P/775VKpcPzsU49KT5CNW7YjJ+cSYqLr1/s6n3IRBw4eqVettyFY5+rosZNSDp6JhAWFrMg7WHJITp9Nlkq9s6ZPbtNnYEHMbDVuRkYmesfGqGt3JcN209AYiAYN7QxGPPXt6YvkgxmKNdgn9ddUGeHoOww3PvUPuC35AEcPLMLqQ4tq/+oIn5jrMX7ajzF83BCg0tiiWCpdTZViRE4I8u0eRKo5hIWaKhyzQi4T/5gAuG3nXjzxyP3yuxn8zD//876E49piIPw7m0ZdTEtHcGAAbr91FpydnSSPZ9a0SfjP+/PQv1+8ZLG3BZhfsmPPPmzbvhsnT53Ba3/6vcZANGjQcBmThoZj1b4UVFRUS1l7e1wW1Cpcw8Zj4pODMCjlNAoKioVR6PSe8AmJhY+vJ6qMJWhp3qeTYiAj+4S26jm6Gswl1dMzszD+utGiYX23egPCQoKlUq8ldu09oDSIJMTF2k5sLS4uxg3jRuPmmVPg5+srgQxm+Pp6I0oxju0797QZA+E99+sTB73ScFgYsrolwRadDI2BaNDQAYgM9sbI3v7Yk5SH6Ah/i6KItlFVXgIHnQF+0cMRUBsxxWiu6spyVJSVtOgexP9RVQlXxxqMGdD9GcgWJbFn5+RI8mpaeqZknxP0fTTM12CTKX5mzMjhyMrOsT2wlJGpRurFdJw4dVqSDS0LJ8bGREvXw7YCGUiAv588S3dLUNQYiAYNHQDShduuj8GeU7tQXFIOVxf7CytKYy+jel3B9XkpV70j8nMLMWtsT6mF1Z2x9KpJ9JwAAB12SURBVJtVUobkofvvkhawNFWxiGJRUbGUdQ8K9K/7bFlZGXbu3odbZk1HSupFZGTalvANLq4oVmMYyyuQn1+IV19/C88+9WMEBwXI30ns89i4qrKyUVn2I8dOYN+BI7Xl3E3vMYTb08MdPj7e6uWFQf37Wi24SBObxkA0aNBgFb3DfTF5cChWHcpAbFRgSyJvrxjM0ykvLUO4n4u0s+3OSE1Lx/yFS/DL//mJ9D53UcwjOipCiHJpWb78bu4USKK8ev1meHl5wEUxzcLCInFYF5eUwM1gsF4Dy9cbP3n0Qbi6ugiTX7pilTSUeuTBH8rfWfHXWNtQylS6/TL6xPZClLon1G8FAp2jTmpySa24Znp+dCcmojEQDRo6EPdOi8ep1DykZeQjLMTHVJ69vcE+3KhGeVkJ5kwbAA+Dc/tfsx1BR7NBEf+43iZfBvuBDBrY19QqWD0rW9qaK0vzf5baMRrLsXHLDjFj5eblYf/BBIweMaReEUYzvl+3CSdOJOKJRx+Aq8FFeqSnpafX/V1MgZxTK6V60jIycCElTUr/NOQivD8vLy/0i+9ttaEUGZOuiXG7KjQGokFDB8LDoMfTcwbjdx/vQmZuMQJ83du5tbAD9Ioe5Wfn4Z5JvRHfs3PrrrUFnJ2d4W5whZubAbv3HUTi2SSMHTMcW3fslsZSTo5O0vcjOqqnfHb2rGmiMVDz2LBpm/QSIRF3VJ/74JMvRFu5/+476sanlpKitBzWyaLJi1FZ7KNuBp3sDPFt2HedCPTvIf3WhXU00CSozUi/kAYaCN9nOfqcnFwpOc9mWJ6enlaZTFeD40sKnX0TGjRcS/DxdEV0kAfW701CRY0O7m4uLWg0ZR84HM1WZB45WbmYOSIC00ZFtek1Ogs9fH0k5yPh6EmR6mlqIhNm0ycS9aRzFySXox9b/cJUJp2axsnEM7hwMQ1enu7CfFj2/cjR49i7/1BdgymiZ0Q4igqLsUcxJ2oqE2+4DlNuHF/39117Dsh1rxvduBEcGRYZj7xcG7zUe4zoamiiopa0c89+HFNaj04xl5KSUni4uVllUF0NDjVtvXM1aNBgFw4mZuDfy46gDHqEBHmbutS2wXHkEE4sklhZgRIl0d40uidmjolpgzvuWkjPyERQYIBI+nlK4/CtjZQ6fvI0Vqxag58/80Q9Yk0Hu0NtZWlqI95enigtK8P8hUvxyAM/rPdZmr2Sz6fCw8PNdI2696vw13+8iRtvGCvaTluAa86y81w3MhhGlVErakml4M6CxkA0aOhEXMgswPsrjuJEWhH8/LxFGyEZa82xlBwRltxXPxlLSuDhXIMfTIi9JnuyfLFoKaIjIzF65FCbTundew9Ij/QJ40Y3OybXZMu2XUhQmsJjD93TrXwV7QWNgWjQ0Mlgjax1+85jxa5k5JbWwMfbAx7uLqa2tjU1Ngslmk1Vzo46VCmpubioFM6oxMjePTDruhj4eRma/O7VDEZZbdm6C6NHDWvUWdASl5Tm4qU0EcdmIqOIouISrF63CZNuGGe1u+G1CI2BaNDQRVBQbMT3u85h3+lsJGWVwOCqFxMKLBp6mWVp5hbwd4OzAwoV08gvLEGvQHdE+Ltj0vAIxITaX979aoZlr/MrHgst6gl2TUBjIBo0dDHkFxmRnJGPE8mXcOBMNjIvlcHZWSdtaJ2dHVFTXa20liqUVVTC39MF/SN90aenL8IDvRDmf3VU2NXQPaAxEA0aujCoabBtcGGJEXlF5SgqLYerYiI+Hi7S1Iu91p2ctK4MGjoHGgPRoEGDBg2tgia6aNCgQYOGVkFjIBo0aNCgoVXQGIgGDRo0aGgVNAaiQYMGDRpaBY2BaNCgQYOGVkFjIBo0aNCgoVXQGIgGDRo0aGgVNAaiQYMGDRpaBY2BaNCgQYOGVkFjIBo0aNCgoVXQGIgGDRo0aGgVmmcgDSplaaWzNGjQ0NY4m3Qel/LyW/XdCykXpY95V8CpxLPS+bC7wVhejmMnE6UTY0tgsyf6lu27sGrNBuw/eAQXUtNw9PgphAQHw+DqcqX326ZIUfd26Mgxafji6+stPZCvFGSUJaVlMjZ/tmwvWaA26+69B5GemYnAAH+7mtHYg3K1iBmZ2cjJvQQfiyY4bI6zfedenD13Hn5+vnB1aZv552bhnF1ISYW3txd0FvOWeCYJew8ckT4UthrytAQVFRVqzMPScpR9rL0827b0eLkaf8v23bIHrnSOuObHeaAqTHN0KvGM3HNbtRlNy8jEwcNHUW4sl/m90p4VJL5r1m+WVqilRiNK1D2zLzjv+UrHZvvXrJxcIdQB/j2uaCxr4Dxv3LIDA/vH161bTm4eDhxKQL56Lv8ePWQfEucvpAo9IsHz8/WRZ8vMysb3azchJjpSWsJ2Ftgr/XDCMfTv10d6o1eo81WQX4jUi2nSbtdyHU6dPiv0lO95WzSnyrl0SWgLnz8woEfdmTSqfbL/0BGcVueSDbDM+5DyfGlZqZxXJycn6b1uRl5+AfapuUpPZ+tf/7qx2KSMc3vqdBI8PdzgZjBIX/YDBxNw4tRpxMfF2v3MTTKQ79duxJ79h3HX7bMxaEA/HDl6Qi3ydsyeOVVutKvgcMJxRVz3ICqqpxAnTnB8XK96xLAhyBT0emebz8FNzTn46NMF6N0rGmGhIfJ+tjpIH322ACFBQcjKzsGGzTvU/PS1OVZaegbYCkivb3pzp2dk4ft1m/DOR59J3+VhQwaarqeYyfIV38NZjc/F/eyLr2Q9fHya7ohGYlKsCIibW9Pd6Nh3mcT2g3nzsUtt2JlTb6zb4J8vXIKkpAsIDQnE3//1Ltzd3NArJqrJsSqrKmUuePibmncywWXqOUpLjchVz/TWe58gPCxEXk3BqAhgVnauur7BLiL49crV+PDTL6RjnJenZ5OfK1WCQU6uGtfdzea4z//6D2q8Bdi0daciCE4YMXSgzTXkuHxO12YELO7Tr9VchKs9xbkmMYjqGd7k5ylQGNV62WJeCcdO4pVX38DO3fuxcesOfLV8JY6oszFxwljZO9bAvUymbut+M9W6blLE/c1356mzdQ5Tbhxv89laCjK5BYuWyX32DA+V944pwsqWtKHBgfjvl8vkM3379BYCfejIUURFRmD7rr2KMGcgLjZaMRg/nFQMnkyeTKgzwHlatmIV5syeIYytoKAIm7ftxLz5Xwqhnjj+urrPrvx+nRDwGEWzFqt1cnR0kmc/k5SMj9V+66MI+JGjx7F730EMGzwAVVXVeOv9T0So8VB7dsFXX6NvfG/5mc+9eNkK/Oedj3H9dSPrGHxGZhY++OQLREWE43xqKjZt24WhgwawfTzmf7lUOjH28PPBl0tXIDgoUARhnnGe0R5KSLVXULB62klcvlr+nfQJDgkOkgmJ6x2N8WNHNXs4bKE9zF/ffLsa0UryIBG/9eZpsggFBYU2v7N+0zaRqGyBk3j9mJFCZCjZmsGWlsayctwwfgxmKKLLhaZEZAtbd+zBeSXl24KbIg5kGpQgSsvK6t7ft/8Q1m3chuvV3P/sJ4+gqroKC79abnOsM2fPNXtPJPR9eveSzZOnGI6ZkFIS4f2WV5RjnHp+Tw93eeZqG2tXVFQivaJLSsqa/EyS0p64OXvFROL+u+8QgvD+x/8Vyaop5Kl13Lpjt2hmzeHc+QtqXbeans3BtgZK5rFNCR1VVVVNfob3FRgYgNf+9Hv867X/w1OPPaT2grvNcanJUbK0fe08EUqmTpqA8ep8DRwQDw8P2+MeUlLtCUUobIFr+NPHf4RXXvoV/vCb5xUxGYU7brupnkTaEJROeV5sgd8fPLCfkmB7yJ5oaxw8dBSFhcXoHx8nv5MJv/X+pxgzapgwlbFjRsgeJFatWY9+6nM867fMmiYMsqSkVP5G2kQmmt3MuW4v7Nl3AAYlQJFeEs56J/RTezxSCQYVFvPG+6Ogc8P1Y+S8jxw+BMu+WSW0kYIitZHRI4Zizi0zse/AEcUk03H0xEkRjOfMnokJ6nuuSsta+d1aGY+0ecjA/kKj2DvGjBXfrRNtlPNHoX+PYkYUQC+mpWPj5u1Cu64bPUIJJQZFQ9fId3SKBpBhrVWarL2wKppUS8czI+YvXCo+kN6Ky1Pq7dsnTjGXMnUzh1BYVCQHwNPDQ22CBPj4eispKkJU0XylOpGLpqWnK8k6W0kFfYTLnkk6J5L6xOuvuyJGZAlyytf/8748vIMiijGRPW1KnwSJZ3MSbZAiHj7e3vXMU1xkcnw/X1/5nc8QoKSfhGMnZKGavp5Ds9ejWiqqqTqwlp+Ni43BJHWQzPfBXsxUTW216nRycmz2etTAKP1TCrH8LH9+8df/I1oHNbVLeQWYceeNNsfjvVTD1Ju7KXA+p0+eAG8v09oEBQXgoCKM1F5cYF2qlzXldZt5lmJFRHbs2odRI4ZhzYYtzQoq5vVv7pmobZC4cx641jystpCjpLrmbMhktJcu5Yt5g4x55LAh6N83zuZ3qL3a0qgJnk+aKQgKD9SayURsjuvQ/Lgk3nx5qHNerp6vrXH42HExPZnXgmaavIJ8uS+a5CjkDBnUX/5GBv63f76DZ3/6qPg8BipGYtayQ0OCZQz6IKiRdDQSjp4UCd8MnuOeEWHwVec1Kyu77v3kCynC9MwWDT8fb2HiZCxkFua9wPNJOpx8PkXMnUXFxYoGmNaKdOmIYpbUTGjmooBlaQHh946dPIWB/frI72Qk3M8UsgqLfIWWmOctVs39uo1bRdt3UQxwsNLgyEBy1Vo3t98JqwyEgz9y/w/x6j/fxlPPvYBopWo99diDYhrYsXufWuAC4VrBitsOUhd8871P8MiDd4s6nJmVow7GRrUREjD3jlvEOfa7l1/DEw/fJ8T9T3//NyIU4erft0+9a2bnXMImpXrzQcybmg/t7OQMf39febi+fWJl8ixxn5Jm9x1MkPvspSbj9b++BCdn2yY2EvTmDg7B5+G2NpMZ3g+lJdpkzTCouUpNy7A5jumgNm+CoURsIn6XCSDnni+CKnry+VQ89/RjNokfCY69dm9uwob3GqK0EmpM7340X1Trm2dOsdkLmnOpa4Ygk9H/SO0pgj4kbtrblURFRtXkc9SO2dyz0IRJQsO5+3b1+mbX1p5xuYdKSkpEw+R4X3+3Go//6D5E1JpZrKLGNPe2kJJ6UWm/OchX2hXP2Qef/Bf3zb0dw4cOavI7IoDYHBV1zOOSEi7WKU3s8Yfvb+YbtQy62U+ZQKIEG4yZTOuIEqRcLEx8/A7Xlz4p+gAG9mtsXkpNTRdtw4zkC6lCQ0jAAgMCsGDRcvmZtIc05unnf4uHn3weAxShff3VP9Rba16HjmAKczQDUyrn3Jn9KjSFZWZmKy0hUHwU1p6Rggh9jc4WNIT7ytPTXQk/3vLd2AbmXAoD9F36+zdmXFVqTMtpowZaprRb+h1MY5t8kbl5eUJXUWcJkM2kCH6xSWC0GLNG/ePe5P2SqZBOWV6E4xUXl9a9xTmiZkQGRdM2GYhZyCKjylYaOc9kgJonN7Ve/DtNYGQgFRWVuJieoWhCgFXzrVVKSwcVVSVyfnLMv//7PbHVjh45VOy2vHFyvF6KsFE64+f79I6RieF3aFaiTb1ffG/sVAwnWqlxVNkpKVYrgmXNye3t5SFqKAma+VzzEWmOoMqmUxNlcG1s09+xez+mT7kBd865CR/M+wKvvfEO/vLH34jpyQyqf9yYnEje9+mz58TZRqJGByG5eH+1uZt0vtcjNPUPEReroeMuOztX1E4+CzcvpSJKHVlZuSItkBkOGdy/aeJphbBRq1uw+Gv86L65Yuu0BOd/34HDKFXXcFGS8kl1PW48k1RSgyp1mAYN7NekXdMaHQ1Sh/fpxx/Cf96dh3+99ZEIEJZSDoMWKFnp1bPT3stn5KFwdzfInNJOTSm4IXioacK5cfxY3Dt3TqO/8znow+HGzlWS+qlTZ7DJw03mjOPy8JoZKnHsxCnxH9HGvHnrLmHCnGtLDY2Hcdee/XLonNW4WYpA0em43mObPBMPIB2HlsyBfgOagszBDLv3HsB/v1yKXz73VN1n6O/g/ZJY8X5JQKurasTMyGty3rnO9SRidUs9fGkeHaG0GlcRxBYtW1mPgfAwkyDznOkVoTuScEIOLwlgpXo+pT9hxLBBohU0xKbN29UzOVsNUOC80vbOaXFydBKTD7Xe/MJCeQYSjlHDhzTpa7HFcLnWNIdaCkqkUdSGyVSa8hHSnAgL0wv3OXu/jxo+VGkVQdi6fRc++2KxMBCuIffM3Xfdhg8/WaC0kbfxlz/8po7Yc55J8Aiaaj5b8BWGqH1/04wpQoRXfLdWtIKdapzbbp7eiCCSPvTvF6c0op71npV3x/3ANdY7NyaivOeS0tJ6TMcM0jv6B+t+J0NR/+rPU42sqU6u2ZhJO1kQ/Lr31L6otx4iEF0ej+NY7n+aOF2UkNVwDfm73mJ9OAd5tc9DZkOzM4Xkc8nncfcPbhMGWm/OGt5sqfriqjUb5WduroH9++LuO2+TyCteiIeMm5AD0V5H5zrNESQkfI/OGXIx2k2JE4oADFOHgzdGOxzV4YAA/0a2b/pdUtWiX5RXhrzS1IsRDKfUYU88c049VEm97/Ba6zdsFXsinXvv/OsvKFSq3mF1T5YgYeO90nxCkwSJuoeo5h7yvodSjXVWDgcPlKWaz59pMzSzdhIrbo6GDlASKS8v0/XcFCOj+YPqN6/pxftQLx7gRterNa00lKBpF16weLnSBKZi9qwpQryNFn4Bfs/T8/Kz0LlGn4qYxTw9hQjqrUhcREPNgao0CSXVZhKEvoqwLv1mlUhOluCzeKtxOYe8Np/RUwkBvB7vw5oDnxt56derxCT6xKP3yz7Ky68fuml+DhmXa6Wew1ON6Vk7rsFQf1wKMFxz+rUOHE6QiKntu/eKifUyaiXI2nE9asf1rjUb0izo2oBo7t1/SBGuJYqYm/xpjJS62EDT5BryeTkG593d4CYOf5kD9Z63j1ejCD0SUy8vD2EeMv9q7RhUYAkSK45p3q+cS75kv6p9xfW0RpApzDAwoinTAwmc6ZnVPlHzzDHd68b1lMAMs5mkIZrT2HIVgUpRZ9V8duX8qj10PuWiRN3xb9ZAi4KDxTXJNLjvvL3NZmgH0UjylXTOYI/JE6/HTdMn4+03/izvnzx12TdE36HZr0VGwXmiZkCQ9pC20a/Le2PwTUOQuGdnX0KKBQ0y0yEKoCdOnhHJvCEoCNJkZemDqJs3tb6WPs0w9XwUiHNyTGtu1pD8lXBHLc08BvcFGQHXUtbbch/VQNbNvFZmemH+nXvDUjjlOGRy1EL4oiBi1j05hxRoLM3+vCdafmgVorZ8++wZKDdWiN+wIRrtQkYMrFy1VhHl0bK4lPoofU264fq6aA5GxpBZ8MYYOUSn1nal+tHmunvfAcVkQkSKuSgMIB0/uv8u+R7NFoMHDRCHYHhIsDiYzCADCg4MEGdtQ8VaOLbSRFz09f0mnGxu6lyJKPAVqYumDBILS4SGBsur7hnV9enACujRdKQBNxPtjozp5osbk8SA36MZj6DTuFS9GBFhCR7GobV2W+L8+Qui4dDE1hQ4l+YoHtp3SQy4Efje+/P+K9LjJaXmvv3+J0JEB/S7bALk5yzNAyQUXCM6xGxdj89IrZBElwycTIAH5M335iEiLEwYI9XXAKWaN9Sy+Czm52G4M5k5pUYXvXVGRTWfzkLupSmTxot/jWayJ3/8YL3P0edjBokG537MyGFNEq+JSpPhmnB9RNVXzxSv9oCbBaPhARtgMT/Z6lBQE6QDsynwgHMvP/njB0RrOn02WQQVS3BOhlisM0N+eR9Dbcz7mFHDsW3XXllLXx8fkfLMEXdm8OxYrh33BAUCW+MSfH4Sagp91kAmZ6npkKhwbRuakxuCGhrvk/uE8+bcUPqFac+TgFkLYKiuqW7SmU+iaSkMcU0WLV2JlJQ09Inrpa5bjHGKrhgVActTc8azTgZD32O00nLd3C6Pm6uEnNiYy1oviS41IIL7WldLhPncPB8NwWfi/XD+re03nhlq2A3Bz9PiQQ3XEjzDtATwfFBgpmBJzZwMm1YQCt4MuohV2hsFFGpxZoaXowQ50lsKW6RrK1etE0bEebxw8WJtRJWDnGFq3HzRvG4ya1GTHIwjx0/KWKRjFOrpa/JRjFlXSzNJw3kf8X161TEfas9kPnzOcEXHf/zQPUKPKJBZns26OW74Bok+uffyFatF3aZPgkT5lllT6z4za9okkfgYjhbfJ1aIHG+KnJUTRe++LKi6SZq2OGnE4IH9kc6FVJ8ND6tvS6ZkZo5gsBc9evhi2pQbxAxAJxoP2gh1QAY0cyBILPmyBYbxUkL29fOReG1KqcOHDsYUJQEx7nzhV1+rjViIaZMnYPCAfravZzRK8IEtpCtpjeY4SpjciBu2bMekCeNkgx08clRU1HMLL6jNUIonHr7XZu6J6flsX69UfYbmxQK1wTnvDEEkYWco3xOPPIDklBSkfZUh6/XC/z4jz9/09crqnrEpBkLtktFdtP0vWrpCGBf3kY9X0wEP8hxG06spAkSzAk0X9C3w8NHElZR8QYI4msozMY9rZtLWQBMubcOLlnwjYbTUqG+/dVaT9yrj1pqYbIFhpgz1/GT+IllrEo+777y12XGtacgNQZMpGU1QkH+zn5VxuW7NnANK7WuV4EcmTG3o29UbMF4RdJ49S3B/2NojTSE6MlyETDNC1V6kmeq7NRskjJWa2IP33Cn+hZtnTBFNPCgwUGjOVLVfY2qFGM4RmT6js8zgGdHpTOfEwYKx0RxubTpJkBlU0hpQGKa2dd1o0+8UJHiGmcdCs/83360RXw9/fvDeOyWvi9I9za8P3XenfIf3/vmCr+R88FmoaVEwZtAOn/WT+V8qzcwbkRHhmDntRvkOTbgM3aYQsHPPAVknCiQ8yxnZOUKnyCynT50oIc/EHWofr1i1RjRRjn/LrOl1z8HQaO4j0lNaNshMSOdvmj7Jaoi0Q00D4xqlGEoTVD9T1IQwca2h04hgUhG/SmZzQR3e4MBAkXzJNHxqk9LITBj651lrq+Xn+T1G/9jjxLYXJL50ZDOiwdI+3hS+W7Mew4cMktjnpiB2QEXIDQY3JXUZhdCYE5e4OY6dSBTiRebaHBheypjvqMim740HgloGpRlKEbTl0jdjIszGOoYhDj11kG0xkKNqU1FiHGVDwuYzMHadZhiuG6UUfyYp1hJqammUnCIZSdJMNAaZAk0EY5Xg0FTuCZ9DBA2LZCZ3pSXom2A4BCVKmqXoG7OVf0FQU6Epi4yG8+Xn693kdyiNcv1ozrA1j2Qw/Bznh2HHzYEOd65bQ43CGhhSyflg0llT5kUz9h88LFJ/U5qFGdw3PAv2JptSGySBtpU4RoaYqeaLPiiaY8oUQ+nh11gjbS2oMc1fuAQ/efRBMV+acTYpWXxg/eJjRXo2g1orfVgkfGbBlDhw6CiWfL0Sv3zup2LC5f7+x3/eF4GGAhEDLU4qYezxh+/Da/96FzOU4DnAilO/taD/67vV6/G/P3tSaATPKYUvahHUgujUppPfrBnT9EpaKaY2C8bLc8jAI65LQ9M4I0CpDZLmmIMAaAKmMOaptMtitTYuznq1/qbzSm3xpCTAujbyR549lywaC7UKS58X/cg8kw/c8wPRvGlyJpiTQy1pQAMm0oiBaNCgQUNHYvHSleKopZTbGpARv/vhZxgzeriYOwlaUpZ8/a0IAbNnTpOk2FVrN4lwTMGWgTdtKcTyOp8vXIo+Sso3W2C6G8jMmaj82I/uFQZNRv3ux5+LgEi/7+OP3N9ImdAYiAYNGjoV1JbXb96GUSOGIsiGVaApMGKN1R4YbWUGTe/iIyB5qzHlbFE7pCnVVtb/lYBWi7Ubt2DKDdfXK0XUHUALwboNWxHbK6rOqkKNVsK3YYoOs2bu1RiIBg0aOh3moI7W1JWjWcdaXkdngCY/Mq62qMfXkeD80+zX0jJVGgPRoEGDBg2tQvdikxo0aNCgoctAYyAaNGjQoKFV0BiIBg0aNGhoFf4fm9eGoyHPk08AAAAASUVORK5CYII=" alt="" />

【数据规模与约定】

对于 30% 的数据,N,M≤50。
对于 60% 的数据,N,M≤100。
对于 80% 的数据,N≤2000;M≤10000。
对于 100% 的数据,1≤N≤105;1≤M≤2×105;1≤Ai,Bi≤N,Ai≠Bi,0≤Ci<M。

【题目分析】

题意很简单。通过分析可以发现求得的所有最短路径都在图的最小生成树上。

最小生成树上的每一条边被走的次数为该边两端的子树大小之积$(t)$,又因为边权为二进制数$2^c$,

给出$c$,那么我们就可以在答案数组里的第$c$位加上$t$,答案数组表示的时答案的二进制。

最后将答案数组写一遍高精度二进制进位即可。

【CODE】

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<string>
#include<algorithm>
#include<cmath>
#include<vector>
using namespace std; const int N = 1e5 + , M = 2e5 + ;
int n, m;
int ecnt;
struct node{
int len, st, ed;
friend bool operator < (const node &a, const node &b){
return a.len < b.len;
}
}edge[M];
int adj[N], go[M << ], len[M << ], nxt[M << ];
int sze[N];
long long ans[M * + ];
int fa[N]; inline int getF(int x){
return x == fa[x] ? x : (fa[x] = getF(fa[x]));
} inline void Merge(int u, int v){
int fu = getF(u), fv = getF(v);
if(fu != fv) fa[fu] = fv;
} inline void addEdge(int u, int v, int l){
ecnt++;
edge[ecnt].len = l;
edge[ecnt].st = u, edge[ecnt].ed = v;
} inline void addEdge2(int u, int v, int l){
nxt[++ecnt] = adj[u], adj[u] = ecnt, go[ecnt] = v, len[ecnt] = l;
nxt[++ecnt] = adj[v], adj[v] = ecnt, go[ecnt] = u, len[ecnt] = l;
} inline void dfs(int u, int f){
sze[u] = ;
int v;
for(int e = adj[u]; e; e = nxt[e]){
if((v = go[e]) == f) continue;
dfs(v, u);
sze[u] += sze[v];
}
} inline void dfs2(int u, int f){
int v;
for(int e = adj[u]; e; e = nxt[e]){
if((v = go[e]) == f) continue;
ans[len[e]] += (long long)sze[v] * (n - sze[v]);
dfs2(v, u);
}
} inline void printAns(){
int i, x;
for(i = ; i <= m + ; i++){
ans[i + ] += ans[i] / ;
ans[i] %= ;
}
for(; i >= ; i--) if(ans[i]) break;
for(; i >= ; i--)
cout<<ans[i];
} int main(){
scanf("%d%d", &n, &m);
for(int i = ; i <= m; i++){
int a, b, c;
scanf("%d%d%d", &a, &b, &c);
addEdge(a, b, c);
}
sort(edge + , edge + m + );
ecnt = ;
for(int i = ; i <= n; i++) fa[i] = i;
for(int i = ; i <= m; i++){
if(getF(edge[i].st) != getF(edge[i].ed)){
addEdge2(edge[i].st, edge[i].ed, edge[i].len);
Merge(edge[i].st, edge[i].ed);<<edge[i].ed<<endl;
}
}
dfs(, );
dfs2(, );
printAns();
return ;
}

【NOIP模拟】roads(最短路径转最小生成树)的更多相关文章

  1. 【NOIP模拟赛】藏宝图 最小生成树

    性质:我们把最小生成树建出来,如果其距离符合那么就是对的,不符合就是错的 因为这是个n^2的图所以不能Kruskal只能Prim #include <cstdio> #include &l ...

  2. CH Round #55 - Streaming #6 (NOIP模拟赛day2)

    A.九九归一 题目:http://ch.ezoj.tk/contest/CH%20Round%20%2355%20-%20Streaming%20%236%20(NOIP模拟赛day2)/九九归一 题 ...

  3. 2014-10-31 NOIP模拟赛

        10.30 NOIp  模拟赛   时间 空间 测试点 评测方式 挖掘机(dig.*) 1s 256M 10 传统 黑红树(brtree.*) 2s 256M 10 传统 藏宝图(treas. ...

  4. NOIP模拟 17.8.20

    NOIP模拟17.8.20 A.阶乘[题目描述]亲爱的xyx同学正在研究数学与阶乘的关系,但是他喜欢颓废,于是他就制作了一个和阶乘有关系的数学游戏:给出两个整数 n,m,令 t = !n,每轮游戏的流 ...

  5. NOIP模拟赛20161022

    NOIP模拟赛2016-10-22 题目名 东风谷早苗 西行寺幽幽子 琪露诺 上白泽慧音 源文件 robot.cpp/c/pas spring.cpp/c/pas iceroad.cpp/c/pas ...

  6. contesthunter暑假NOIP模拟赛第一场题解

    contesthunter暑假NOIP模拟赛#1题解: 第一题:杯具大派送 水题.枚举A,B的公约数即可. #include <algorithm> #include <cmath& ...

  7. NOIP模拟赛 by hzwer

    2015年10月04日NOIP模拟赛 by hzwer    (这是小奇=> 小奇挖矿2(mining) [题目背景] 小奇飞船的钻头开启了无限耐久+精准采集模式!这次它要将原矿运到泛光之源的矿 ...

  8. 大家AK杯 灰天飞雁NOIP模拟赛题解/数据/标程

    数据 http://files.cnblogs.com/htfy/data.zip 简要题解 桌球碰撞 纯模拟,注意一开始就在袋口和v=0的情况.v和坐标可以是小数.为保险起见最好用extended/ ...

  9. 队爷的讲学计划 CH Round #59 - OrzCC杯NOIP模拟赛day1

    题目:http://ch.ezoj.tk/contest/CH%20Round%20%2359%20-%20OrzCC杯NOIP模拟赛day1/队爷的讲学计划 题解:刚开始理解题意理解了好半天,然后发 ...

  10. 队爷的Au Plan CH Round #59 - OrzCC杯NOIP模拟赛day1

    题目:http://ch.ezoj.tk/contest/CH%20Round%20%2359%20-%20OrzCC杯NOIP模拟赛day1/队爷的Au%20Plan 题解:看了题之后觉得肯定是DP ...

随机推荐

  1. 微信小程序多张图片上传

    微信小程序上传图片每次只能上传一张,所有很多朋友就会问想要多张图片上传怎么办? 首先,我们来看一看wx.chooseImage(object)和wx.uploadFile(OBJECT)这两个个api ...

  2. [原创]adb使用教程v1.0-----by-----使用logcat快速抓取android崩溃日志

    原文再续,书接上回:<使用logcat快速抓取android崩溃日志>中提到的工具包可以下载拉~ <使用logcat快速抓取android崩溃日志>:http://www.cn ...

  3. 9个常用iptables配置实例

    iptables命令可用于配置Linux的包过滤规则,常用于实现防火墙.NAT.咋一看iptables的配置很复杂,掌握规律后,其实用iptables完成指定任务并不难,下面我们通过具体实例,学习ip ...

  4. C# 中文在URL中的编码

      UTF-8中,一个汉字对应三个字节,GB2312中一个汉字占用两个字节. 不论何种编码,字母数字都不编码,特殊符号编码后占用一个字节. //按照UTF-8进行编码 string tempSearc ...

  5. 关于QT5使用QtScript解析QJsonArray数组的问题

    首先得在pro文件中加入QT+=script 然后导入相应的头文件 include <QStringList> #include <QtScript/QScriptEngine> ...

  6. js替换字符串中所有指定的字符

    第一次发现JavaScript中replace() 方法如果直接用str.replace("-","!") 只会替换第一个匹配的字符.  而str.replac ...

  7. 微信 python 接口 -- itchat 文档

    itchat 一. 安装 $ pip install itchat 特殊的字典使用方式 通过打印 itchat 的用户以及注册消息的参数, 可以发现这些值都是字典. 但实际上 itchat 精心构造了 ...

  8. module.exports,exports,export和export default,import与require区别与联系【原创】

    还在为module.exports.exports.export和export default,import和require区别与联系发愁吗,这一篇基本就够了! 一.首先搞清楚一个基本问题: modu ...

  9. JS添加类似C# string.Format方法

    String.prototype.format=function()   {     if(arguments.length==0) return this;     for(var s=this, ...

  10. forfiles命令批处理删除过期文件

    命令格式: forfiles.exe /p "D:\备份" /s /m *.zip /d -7 /c "cmd /c del @path" /p:指定目录 /s ...