POJ 3398 Perfect Service(树型动态规划,最小支配集)
POJ 3398 Perfect Service(树型动态规划,最小支配集)
Description
A network is composed of N computers connected by N − 1 communication links such that any two computers can be communicated via a unique route. Two computers are said to be adjacent if there is a communication link between them. The neighbors of a computer is the set of computers which are adjacent to it. In order to quickly access and retrieve large amounts of information, we need to select some computers acting as servers to provide resources to their neighbors. Note that a server can serve all its neighbors. A set of servers in the network forms a perfect service if every client (non-server) is served by exactly one server. The problem is to find a minimum number of servers which forms a perfect service, and we call this number perfect service number.
We assume that N (≤ 10000) is a positive integer and these N computers are numbered from 1 to N. For example, Figure 1 illustrates a network comprised of six computers, where black nodes represent servers and white nodes represent clients. In Figure 1(a), servers 3 and 5 do not form a perfect service because client 4 is adjacent to both servers 3 and 5 and thus it is served by two servers which contradicts the assumption. Conversely, servers 3 and 4 form a perfect service as shown in Figure 1(b). This set also has the minimum cardinality. Therefore, the perfect service number of this example equals two.
Your task is to write a program to compute the perfect service number.
Input
The input consists of a number of test cases. The format of each test case is as follows: The first line contains one positive integer, N, which represents the number of computers in the network. The next N − 1 lines contain all of the communication links and one line for each link. Each line is represented by two positive integers separated by a single space. Finally, a 0 at the (N + 1)th line indicates the end of the first test case.
The next test case starts after the previous ending symbol 0. A −1 indicates the end of the whole inputs.
Output
The output contains one line for each test case. Each line contains a positive integer, which is
the perfect service number.
Sample Input
6
1 3
2 3
3 4
4 5
4 6
0
2
1 2
-1
Sample Output
2
1
Http
POJ:https://vjudge.net/problem/POJ-3398
Source
树型动态规划,最小支配集
题目大意
在一棵n个点的树中求一个最小的点集,使得该树上的点满足在这个子集中或与子集中的点相邻,另外,不在该点集中的还满足有且仅与一个在点集中的点相邻。
解决思路
这道题的解决方法与POJ3659差不多,基本的思路可以参照我以前写的文章
那么这道题不同的地方就是非服务器不能连接到多台服务器,所以我们的动态转移方程就要改一改。
(这里先假设读者已经阅读了笔者在上面给出的文章,本文中的各变量意义与上文中的一致)
首先,关于F[u][0]的改变。因为F[u][0]代表是把u作为服务器的情况,所以在本题中它不能由F[v][1]推导得,因为F[v][1]表示v被v的子节点覆盖,若由被u覆盖,与题意相悖。
第二,F[u][2]数组不能从F[v][2]推导得,同样也是上面的原因
第三,F[u][1]现在有且只能被一个子节点覆盖,所以笔者把F[u][1]的计算方式改变了一下(具体方式请看代码,非常巧妙哦!)
代码
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<vector>
using namespace std;
const int maxN=10001;
const int inf=147483647;
int n;
int cnt;
vector<int> E[maxN];
bool vis[maxN];
int F[maxN][5];
void dfs(int u);
int main()
{
while (cin>>n)
{
if (n==-1)
break;
for (int i=1;i<=n;i++)
E[i].clear();
for (int i=1;i<n;i++)
{
int x,y;
cin>>x>>y;
E[x].push_back(y);
E[y].push_back(x);
}
int A;
cin>>A;
memset(vis,0,sizeof(vis));
memset(F,0,sizeof(vis));
dfs(1);
cout<<min(F[1][1],F[1][0])<<endl;
if (A==-1)
break;
}
return 0;
}
void dfs(int u)
{
vis[u]=1;
F[u][0]=1;
F[u][2]=0;
F[u][1]=inf;
for (int i=0;i<E[u].size();i++)
{
int v=E[u][i];
if (vis[v]==0)
{
dfs(v);
F[u][0]+=min(F[v][0],F[v][2]);
F[u][2]+=F[v][1];
F[u][1]=min(F[u][1],F[v][0]-F[v][1]);//巧妙之处在这里,这样就可以保证除了选出的F[v][0]-F[v][1]最小的v是从F[v][0]得到
}
}
F[u][1]+=F[u][2];//还有这里,最后加上所有的F[v][1]之和
return;
}
POJ 3398 Perfect Service(树型动态规划,最小支配集)的更多相关文章
- POJ 3398 Perfect Service --最小支配集
题目链接:http://poj.org/problem?id=3398 这题可以用两种上述讲的两种算法解:http://www.cnblogs.com/whatbeg/p/3776612.html 第 ...
- POJ 3659 Cell Phone Network / HUST 1036 Cell Phone Network(最小支配集,树型动态规划,贪心)-动态规划做法
POJ 3659 Cell Phone Network / HUST 1036 Cell Phone Network(最小支配集,树型动态规划,贪心) Description Farmer John ...
- POJ 2152 fire / SCU 2977 fire(树型动态规划)
POJ 2152 fire / SCU 2977 fire(树型动态规划) Description Country Z has N cities, which are numbered from 1 ...
- POJ 3342 Party at Hali-Bula / HDU 2412 Party at Hali-Bula / UVAlive 3794 Party at Hali-Bula / UVA 1220 Party at Hali-Bula(树型动态规划)
POJ 3342 Party at Hali-Bula / HDU 2412 Party at Hali-Bula / UVAlive 3794 Party at Hali-Bula / UVA 12 ...
- POJ 2342 Anniversary party / HDU 1520 Anniversary party / URAL 1039 Anniversary party(树型动态规划)
POJ 2342 Anniversary party / HDU 1520 Anniversary party / URAL 1039 Anniversary party(树型动态规划) Descri ...
- POJ3659 Cell Phone Network(树上最小支配集:树型DP)
题目求一棵树的最小支配数. 支配集,即把图的点分成两个集合,所有非支配集内的点都和支配集内的某一点相邻. 听说即使是二分图,最小支配集的求解也是还没多项式算法的.而树上求最小支配集树型DP就OK了. ...
- 树型动态规划(树形dp)
树型动态规划就是在“树”的数据结构上的动态规划,树型动态规划是建立在树上的,所以有二个方向: 1.根—>叶:这种题目基本上碰不到 2.叶->根:根的子节点传递有用的信息给根,完后根得出最优 ...
- CJOJ 1010【NOIP2003】加分二叉树 / Luogu 1040 加分二叉树(树型动态规划)
CJOJ 1010[NOIP2003]加分二叉树 / Luogu 1040 加分二叉树(树型动态规划) Description 设 一个 n 个节点的二叉树 tree 的中序遍历为( 1,2,3,-, ...
- CJOJ 2171 火车站开饭店(树型动态规划)
CJOJ 2171 火车站开饭店(树型动态规划) Description 政府邀请了你在火车站开饭店,但不允许同时在两个相连的火车站开.任意两个火车站有且只有一条路径,每个火车站最多有 50 个和它相 ...
随机推荐
- php+mysql 除了设置主键防止表单提交内容重复外的另一种方法
感觉好久没有更新博客了,一直在做网站及后台,也没有遇到让我觉得可以整理的内容,之前做的一个系统,已经完成了,后来客户又要求加一个功能,大概就是表单提交的时候,约束有一项不能和以前的内容重复,如图 比如 ...
- 常见的几种Flume日志收集场景实战
这里主要介绍几种常见的日志的source来源,包括监控文件型,监控文件内容增量,TCP和HTTP. Spool类型 用于监控指定目录内数据变更,若有新文件,则将新文件内数据读取上传 在教你一步搭建Fl ...
- a标签点击之后有个虚线边框,怎么去掉
1.行内处理方式1 <a hidefocus="true" href="#"></a> 2.行内处理方式2,让a标签获得焦点就失去焦点, ...
- hive报错 Execution Error, return code 1 from org.apache.hadoop.hive.ql.exec.DDLTask. MetaException(message:For direct MetaStore DB connections,
学习hive 使用mysql作为元数据 hive创建数据库和切换数据库都是可以的 但是创建表就是出问题 百度之后发现 是编码问题 特别记录一下~~~ 1.报错前如图: 2.在mysql数据库中执行如 ...
- js的函数返回值
今天从跟公司牛人那学到的~避免以后忘了赶快记录下来 平时JS的function的返回值可以是一个数值,也可以是一个对象({name:abc,age:123}),更可以是一个函数(这里我是第一次听说), ...
- Centos6.5 源码编译安装 Mysql5.7.11及配置
安装环境 Linux(CentOS6.5 版).boost_1_59_0.tar.gz.mysql-5.7.11.tar.gzMySQL 5.7主要特性: 更好的性能:对于多核CPU.固态硬盘. ...
- Lamp单独安装(windows下)
安装的软件清单:apache_2.2.9-win32-x86-openssl-0.9.8h-r2.msimysql-5.1.28-rc-win32.zipphp-5.2.6-Win32.zipphpM ...
- Linux常用操作命令(二)
ab命令压测: ab -n 1 -c 1 -p post.txt -T 'application/x-www-form-urlencoded' -H 'User-U:2Lh72GM2UumEAnZzM ...
- Web直接导入导出SHP/CAD实现探讨。
1.导入SHP/CAD文件 WEB具有直接美观展现功能,功能实现到可视化最好不要超过3S,那么就要限制导入文件的大小和优化算法了. 1.1.SHP导入实现思路 SHP格式开源,Git上随便可以找到读取 ...
- stringsteam使用之整型转字符串
最近需要用到整型转字符串的操作,学习了stringstream一些皮毛. 首先需要包含头文件. #include<sstream> 然后用流操作的方式将值传递给stringstream对象 ...