大数定律 Law of large numbers (LLN)

虽然名字是 Law,但其实是严格证明过的 Theorem

  • weak law of large number (Khinchin's law)

The weak law of large numbers: the sample average converges in probability to the expected value

$\bar{X_n}=\frac{1}{n}(X_1+ \cdots +X_n) \overset{p}{\to} E\{X\} $

  • strong law of large number (proved by Kolmogorov in 1930)

The strong law of large numbers: the sample average converges almost surely to the expected value

$\bar{X_n}=\frac{1}{n}(X_1+ \cdots +X_n) \overset{a.s.}{\to} E\{X\} $

https://en.wikipedia.org/wiki/Law_of_large_numbers

https://terrytao.wordpress.com/2008/06/18/the-strong-law-of-large-numbers/

中心极限定理 Central Limit Theorem (CLT)

https://en.wikipedia.org/wiki/Central_limit_theorem

切比雪夫不等式 (Chebyshev's Inequality)

Let $X$ be a random variable with finite expected value $\mu$ and finit non-zero variance $\sigma^2$, then for any real number $k>0$,

$ \mathrm{Pr} \left( \left|X-\mu\right| \geq k \right) \leq \frac{\sigma^2}{k^2}$

马尔科夫不等式 (Markov's inequality)

If X is a nonnegative random variable and a > 0, then the probability that X is at least a is at most the expectation of X divided by a

$ \mathrm{Pr} \left( X \geq a \right) \leq \frac{\mu}{a} $

切尔诺夫限 (Chernoff bound)

The generic Chernoff bound for a random variable X is attained by applying Markov's inequality to etX. For every > 0:

$ \mathrm{Pr} \left( X \geq a \right)=\mathrm{Pr} \left( e^{tX} \geq e^{ta} \right) \leq \frac{E[e^{tX}]}{e^{ta}} $

Law of large numbers and Central limit theorem的更多相关文章

  1. 加州大学伯克利分校Stat2.2x Probability 概率初步学习笔记: Section 4 The Central Limit Theorem

    Stat2.2x Probability(概率)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授. PDF笔记下载(Acad ...

  2. 【概率论】6-2:大数定理(The Law of Large Numbers)

    title: [概率论]6-2:大数定理(The Law of Large Numbers) categories: - Mathematic - Probability keywords: - Ma ...

  3. Sampling Distribution of the Sample Mean|Central Limit Theorem

    7.3 The Sampling Distribution of the Sample Mean population:1000:Scale are normally distributed with ...

  4. Sampling Distributions and Central Limit Theorem in R(转)

    The Central Limit Theorem (CLT), and the concept of the sampling distribution, are critical for unde ...

  5. 【概率论】6-3:中心极限定理(The Central Limit Theorem)

    title: [概率论]6-3:中心极限定理(The Central Limit Theorem) categories: - Mathematic - Probability keywords: - ...

  6. Appendix 1- LLN and Central Limit Theorem

    1. 大数定律(LLN) 设Y1,Y2,……Yn是独立同分布(iid,independently identically distribution)的随机变量,A = SY /n = (Y1+...+ ...

  7. 中心极限定理(Central Limit Theorem)

    中心极限定理:每次从总体中抽取容量为n的简单随机样本,这样抽取很多次后,如果样本容量很大,样本均值的抽样分布近似服从正态分布(期望为  ,标准差为 ). (注:总体数据需独立同分布) 那么样本容量n应 ...

  8. 中心极限定理 | central limit theorem | 大数定律 | law of large numbers

    每个大学教材上都会提到这个定理,枯燥地给出了定义和公式,并没有解释来龙去脉,导致大多数人望而生畏,并没有理解它的美. <女士品茶>有感 待续~ 参考:怎样理解和区分中心极限定理与大数定律?

  9. Markov and Chebyshev Inequalities and the Weak Law of Large Numbers

    https://www.math.wustl.edu/~russw/f10.math493/chebyshev.pdf http://www.tkiryl.com/Probability/Chapte ...

随机推荐

  1. HDU 4825 Xor Sum(字典树)

    嗯... 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4825 这道题更明确的说是一道01字典树,如果ch[u][id^1]有值,那么就向下继续查找/ ...

  2. next_permutation的使用-Hdu1027

    Ignatius and the Princess II Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K ( ...

  3. 《JavaScript高级程序设计》读书笔记(三)基本概念第五小节流程控制语句

    内容---语法 ---数据类型 上一小节---流程控制语句 本小节---理解函数 语句--ECMA-262规定了一组语句,也称流程控制语句 if语句-- 条件可以是任意表达式,-- ECMAScrip ...

  4. C# 集合类型学习

    如果你掌握了一门语言的数据结构 ,那么你离掌握这门语言 也不远了 1.列表 对于list,值得一提的是 Capacity 属性,使用默认的构造函数 ,让我们用代码来说明 var intList = n ...

  5. PAT 1003 Emergency (25分)

    As an emergency rescue team leader of a city, you are given a special map of your country. The map s ...

  6. mock数据时,http://localhost:8080/#/api/goods 无法访问到数据

    最近学习一个vue-cli的项目,需要与后台进行数据交互,这里使用本地json数据来模仿后台数据交互流程.然而发现build文件夹下没有dev-server.js文件了,因为新版本的vue-webpa ...

  7. Cisco Packet Tracer 7.2

    Cisco Packet Tracer 7.2.1已于2018年12月28日发布,版本号为7.2.1.0218,现在可在Cisco Netacad网站上下载. What's new in Cisco ...

  8. WLC3504 HA配置

    1.WLC3504 HA连接方式 2.说明 WLC3504可以支持HA,AP SSO和Client SSO. 也是通过RP端口去连接,从active到standby-hot设备同步设备配置包括mana ...

  9. 杭电 1203 I NEED A OFFER!

    I NEED A OFFER! Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)T ...

  10. Java 中序列化与反序列化引发的思考?

    java 中序列化指从对象转变为 二进制流的过程中需要进行序列化,而反序列化指二进制流转换为java 对象.那么有的时候java 存储到数据库不需要序列化, 而计算机系统本质存储的就是二进制文件,数据 ...