Law of large numbers and Central limit theorem
大数定律 Law of large numbers (LLN)
虽然名字是 Law,但其实是严格证明过的 Theorem
- weak law of large number (Khinchin's law)
The weak law of large numbers: the sample average converges in probability to the expected value
$\bar{X_n}=\frac{1}{n}(X_1+ \cdots +X_n) \overset{p}{\to} E\{X\} $
- strong law of large number (proved by Kolmogorov in 1930)
The strong law of large numbers: the sample average converges almost surely to the expected value
$\bar{X_n}=\frac{1}{n}(X_1+ \cdots +X_n) \overset{a.s.}{\to} E\{X\} $
https://en.wikipedia.org/wiki/Law_of_large_numbers
https://terrytao.wordpress.com/2008/06/18/the-strong-law-of-large-numbers/
中心极限定理 Central Limit Theorem (CLT)
https://en.wikipedia.org/wiki/Central_limit_theorem
切比雪夫不等式 (Chebyshev's Inequality)
Let $X$ be a random variable with finite expected value $\mu$ and finit non-zero variance $\sigma^2$, then for any real number $k>0$,
$ \mathrm{Pr} \left( \left|X-\mu\right| \geq k \right) \leq \frac{\sigma^2}{k^2}$
马尔科夫不等式 (Markov's inequality)
If X is a nonnegative random variable and a > 0, then the probability that X is at least a is at most the expectation of X divided by a
$ \mathrm{Pr} \left( X \geq a \right) \leq \frac{\mu}{a} $
切尔诺夫限 (Chernoff bound)
The generic Chernoff bound for a random variable X is attained by applying Markov's inequality to etX. For every t > 0:
$ \mathrm{Pr} \left( X \geq a \right)=\mathrm{Pr} \left( e^{tX} \geq e^{ta} \right) \leq \frac{E[e^{tX}]}{e^{ta}} $
Law of large numbers and Central limit theorem的更多相关文章
- 加州大学伯克利分校Stat2.2x Probability 概率初步学习笔记: Section 4 The Central Limit Theorem
Stat2.2x Probability(概率)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授. PDF笔记下载(Acad ...
- 【概率论】6-2:大数定理(The Law of Large Numbers)
title: [概率论]6-2:大数定理(The Law of Large Numbers) categories: - Mathematic - Probability keywords: - Ma ...
- Sampling Distribution of the Sample Mean|Central Limit Theorem
7.3 The Sampling Distribution of the Sample Mean population:1000:Scale are normally distributed with ...
- Sampling Distributions and Central Limit Theorem in R(转)
The Central Limit Theorem (CLT), and the concept of the sampling distribution, are critical for unde ...
- 【概率论】6-3:中心极限定理(The Central Limit Theorem)
title: [概率论]6-3:中心极限定理(The Central Limit Theorem) categories: - Mathematic - Probability keywords: - ...
- Appendix 1- LLN and Central Limit Theorem
1. 大数定律(LLN) 设Y1,Y2,……Yn是独立同分布(iid,independently identically distribution)的随机变量,A = SY /n = (Y1+...+ ...
- 中心极限定理(Central Limit Theorem)
中心极限定理:每次从总体中抽取容量为n的简单随机样本,这样抽取很多次后,如果样本容量很大,样本均值的抽样分布近似服从正态分布(期望为 ,标准差为 ). (注:总体数据需独立同分布) 那么样本容量n应 ...
- 中心极限定理 | central limit theorem | 大数定律 | law of large numbers
每个大学教材上都会提到这个定理,枯燥地给出了定义和公式,并没有解释来龙去脉,导致大多数人望而生畏,并没有理解它的美. <女士品茶>有感 待续~ 参考:怎样理解和区分中心极限定理与大数定律?
- Markov and Chebyshev Inequalities and the Weak Law of Large Numbers
https://www.math.wustl.edu/~russw/f10.math493/chebyshev.pdf http://www.tkiryl.com/Probability/Chapte ...
随机推荐
- HDU 4825 Xor Sum(字典树)
嗯... 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4825 这道题更明确的说是一道01字典树,如果ch[u][id^1]有值,那么就向下继续查找/ ...
- next_permutation的使用-Hdu1027
Ignatius and the Princess II Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K ( ...
- 《JavaScript高级程序设计》读书笔记(三)基本概念第五小节流程控制语句
内容---语法 ---数据类型 上一小节---流程控制语句 本小节---理解函数 语句--ECMA-262规定了一组语句,也称流程控制语句 if语句-- 条件可以是任意表达式,-- ECMAScrip ...
- C# 集合类型学习
如果你掌握了一门语言的数据结构 ,那么你离掌握这门语言 也不远了 1.列表 对于list,值得一提的是 Capacity 属性,使用默认的构造函数 ,让我们用代码来说明 var intList = n ...
- PAT 1003 Emergency (25分)
As an emergency rescue team leader of a city, you are given a special map of your country. The map s ...
- mock数据时,http://localhost:8080/#/api/goods 无法访问到数据
最近学习一个vue-cli的项目,需要与后台进行数据交互,这里使用本地json数据来模仿后台数据交互流程.然而发现build文件夹下没有dev-server.js文件了,因为新版本的vue-webpa ...
- Cisco Packet Tracer 7.2
Cisco Packet Tracer 7.2.1已于2018年12月28日发布,版本号为7.2.1.0218,现在可在Cisco Netacad网站上下载. What's new in Cisco ...
- WLC3504 HA配置
1.WLC3504 HA连接方式 2.说明 WLC3504可以支持HA,AP SSO和Client SSO. 也是通过RP端口去连接,从active到standby-hot设备同步设备配置包括mana ...
- 杭电 1203 I NEED A OFFER!
I NEED A OFFER! Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)T ...
- Java 中序列化与反序列化引发的思考?
java 中序列化指从对象转变为 二进制流的过程中需要进行序列化,而反序列化指二进制流转换为java 对象.那么有的时候java 存储到数据库不需要序列化, 而计算机系统本质存储的就是二进制文件,数据 ...