P1198 [JSOI2008]最大数(线段树基础)
P1198 [JSOI2008]最大数
题目描述
现在请求你维护一个数列,要求提供以下两种操作:
1、 查询操作。
语法:Q L
功能:查询当前数列中末尾L个数中的最大的数,并输出这个数的值。
限制:LL不超过当前数列的长度。(L > 0)(L>0)
2、 插入操作。
语法:A n
功能:将nn加上tt,其中tt是最近一次查询操作的答案(如果还未执行过查询操作,则t=0t=0),并将所得结果对一个固定的常数DD取模,将所得答案插入到数列的末尾。
限制:nn是整数(可能为负数)并且在长整范围内。
注意:初始时数列是空的,没有一个数。
输入格式
第一行两个整数,MM和DD,其中MM表示操作的个数(M \le 200,000)(M≤200,000),DD如上文中所述,满足(0<D<2,000,000,000)(0<D<2,000,000,000)
接下来的MM行,每行一个字符串,描述一个具体的操作。语法如上文所述。
输出格式
对于每一个查询操作,你应该按照顺序依次输出结果,每个结果占一行。
输入输出样例
5 100
A 96
Q 1
A 97
Q 1
Q 2
96
93
96
说明/提示
[JSOI2008]
本题数据已加强
题解:为线段树基础……适合刚学线段树的人写一下开拓一下思路。根据题目我们可以将线段的sum改为该线段中的最大值,这样会简单快速许多,具体见下代码;
#define _CRT_SECURE_NO_DepRECATE
#define _CRT_SECURE_NO_WARNINGS
#include <cstdio>
#include <iostream>
#include <cmath>
#include <iomanip>
#include <string>
#include <algorithm>
#include <bitset>
#include <cstdlib>
#include <cctype>
#include <iterator>
#include <vector>
#include <cstring>
#include <cassert>
#include <map>
#include <queue>
#include <set>
#include <stack>
#define ll long long
#define INF 0x3f3f3f3f
#define ld long double
const ld pi = acos(-.0L), eps = 1e-;
int qx[] = { ,,,- }, qy[] = { ,-,, }, qxx[] = { ,- }, qyy[] = { ,- };
using namespace std;
struct node
{
ll l = , r = , sum = , plz = , mlz = ;
}tree[];
ll p = INF, maxx;
inline void build(int i, int l, int r, int insert,int num)//树的编号 最左端 最右端 插入的值 插入的下标
{
tree[i].l = l;
tree[i].r = r;
if (l == r)//找到该点即替换为insert
{
tree[i].sum = insert;
}
else
{
if ((l + r) / >= num)
{
build(i << , l, (l + r) / , insert, num);
}
else
{
build(i << | , (l + r) / + , r, insert, num);
}
tree[i].sum = max(tree[i << ].sum, tree[i << | ].sum);//每个线段的sum为该线段的最大值
}
}
inline ll search_max(int i, int l, int r)
{
if (tree[i].l >= l && tree[i].r <= r)//因sum即代表该线段的最大值,所以找到完全包含的线段就可以直接返回sum
{
return tree[i].sum;
}
if (tree[i].l > r || tree[i].r < l)
{
return ;
}
ll ans = -INF;
if (l <= tree[i << ].r)
{
ans = max(ans, search_max(i << , l, r));
}
if (r >= tree[i << | ].l)
{
ans = max(ans, search_max(i << | , l, r));
}
return ans;
}
int main()
{
ios::sync_with_stdio(false);
cin.tie();
ll m, d, t = , sum = , b,input;
char x;
cin >> m >> d;
for (int i = ; i < m; i++)
{
cin >> x;
if (x == 'A')
{
cin >> input;
input = (input + t) % d;
build(, , m, input, sum);//因为最多只能插入m个,所以可以直接以m为r
sum++;
}
else
{
cin >> b;
t = search_max(, sum - b, sum - );
cout << t << endl;
}
}
return ;
}
P1198 [JSOI2008]最大数(线段树基础)的更多相关文章
- [JSOI2008]最大数 (线段树)
题目描述 现在请求你维护一个数列,要求提供以下两种操作: 1. 查询操作. 语法:Q L 功能:查询当前数列中末尾L个数中的最大的数,并输出这个数的值. 限制:L不超过当前数列的长度.(L>=0 ...
- [JSOI2008]最大数 线段树解法
题目描述 现在请求你维护一个数列,要求提供以下两种操作: 1. 查询操作. 语法:Q L 功能:查询当前数列中末尾L个数中的最大的数,并输出这个数的值. 限制:L不超过当前数列的长度. 2. 插入操作 ...
- BZOJ1012 [JSOI2008]最大数 线段树
题目描述 现在请求你维护一个数列,要求提供以下两种操作: 1. 查询操作. 语法:Q L 功能:查询当前数列中末尾L个数中的最大的数,并输出这个数的值. 限制:LLL不超过当前数列的长度.(L> ...
- P1198 [JSOI2008]最大数【树状数组】
题目描述 现在请求你维护一个数列,要求提供以下两种操作: 1. 查询操作. 语法:Q L 功能:查询当前数列中末尾L个数中的最大的数,并输出这个数的值. 限制: L 不超过当前数列的长度. (L &g ...
- 「线段树」「单点修改」洛谷P1198 [JSOI2008]最大数
「线段树」「单点修改」洛谷P1198 [JSOI2008]最大数 题面描述 现在请求你维护一个数列,要求提供以下两种操作: 1. 查询操作. 语法:Q L 功能:查询当前数列中末尾L个数中的最大的数, ...
- P1198 [JSOI2008]最大数(线段树)
P1198 [JSOI2008]最大数(线段树) 题目描述 现在请求你维护一个数列,要求提供以下两种操作: 1. 查询操作. 语法:Q L 功能:查询当前数列中末尾L个数中的最大的数,并输出这个数的值 ...
- 洛谷P1198 [JSOI2008]最大数
P1198 [JSOI2008]最大数 267通过 1.2K提交 题目提供者该用户不存在 标签线段树各省省选 难度提高+/省选- 提交该题 讨论 题解 记录 最新讨论 WA80的戳这QwQ BZOJ都 ...
- 洛谷 P1198 [JSOI2008]最大数
洛谷 P1198 [JSOI2008]最大数 题目描述 现在请求你维护一个数列,要求提供以下两种操作: 1. 查询操作. 语法:Q L 功能:查询当前数列中末尾L个数中的最大的数,并输出这个数的值. ...
- 洛谷P1198 [JSOI2008]最大数(单点修改,区间查询)
洛谷P1198 [JSOI2008]最大数 简单的线段树单点问题. 问题:读入A和Q时,按照读入一个字符会MLE,换成读入字符串就可以了. #include<bits/stdc++.h> ...
随机推荐
- ggplot2练习
图源于电力电子课本65页——电容滤波的单相不可控整流电路. f<-function(w,d) { l<-w/sqrt(w^2+1)*exp(-atan(w)/w)*exp(-d/w) r& ...
- Python操作系统
一 为什么要有操作系统 (两本书:现代操作系统.操作系统原理,学好python以后再去研究吧~~) 现代的计算机系统主要是由一个或者多个处理器,主存,硬盘,键盘,鼠标,显示器,打印机,网络接口及其他输 ...
- 《Python学习手册 第五版》 -第17章 作用域
上一章的是函数的基础,因为函数在运用过程中,是可以嵌套的,函数中是会涉及到变量的,为了明确各自变量的使用范围,系统是有一套规则或者原则的,这就是作用域的概念 本章重点内容 1.作用域:作用域的概念 2 ...
- tomcat启动时间5分钟左右org.apache.catalina.util.SessionIdGeneratorBase.createSecureRandom Creation of SecureRandom instance for session ID generation using [SHA1PRNG] took [342,445] milliseconds.
org.apache.catalina.util.SessionIdGeneratorBase.createSecureRandom Creation of SecureRandom instance ...
- Lua Table pairs输出顺序问题 (版本差异 解决数字索引间断并兼容字符串索引)
问题标签: Lua Table 迭代器;Lua Table 输出顺序; Lua Table 顺序输出;Lua Table 数字索引 字符串索引;Lua Table pairs; 问题背景: 使用pai ...
- AAAI 2020 | 反向R?削弱显著特征为细粒度分类带来提升
论文提出了类似于dropout作用的diversification block,通过抑制特征图的高响应区域来反向提高模型的特征提取能力,在损失函数方面,提出专注于top-k类别的gradient-bo ...
- 论文速递 | 实例分割算法BlendMask,实时又state-of-the-art
BlendMask通过更合理的blender模块融合top-level和low-level的语义信息来提取更准确的实例分割特征,该模型效果达到state-of-the-art,但结构十分精简,推理速度 ...
- VUE npm run dev 启动时,报了一大堆错误 Node Sass could not find a binding for your current environment: Windows 64-bit with Node.js 7.x
npm run dev 启动时,报了一大堆错误 Module build failed: Error: Missing binding E:\2017VocaSchool\vocationWeb\no ...
- 题解 P1002 【过河卒】
正文 简单描述一下题意: 士兵想要过河,他每一次可以往下走一格,也可以往右走一格,但马一步走到的地方是不能走的,问走到\(n\)行,\(m\)列有多少种走法 我们显然应该先根据马的位置将不能走的格子做 ...
- 升级 nop 4.1 Incorrect syntax near 'OFFSET'. Invalid usage of the option NEXT in the FETCH statement.
Incorrect syntax near 'OFFSET'. Invalid usage of the option NEXT in the FETCH statement. nop.web 项目 ...