题目传送门

解题思路:

可以转化成0-1背包来做,但暴力转化的话,时间不允许.所以就用了一个二进制划分的方法,将m个物品分成2,4,8,16,32......(2的次方)表示,可以证明这些数通过一定组合可以表示任何数.然后跑0-1背包即可.

AC代码:

 #include<iostream>
#include<cstdio> using namespace std; int n,m,c[],w[],f[],num,tot,_c,_w; int main() {
scanf("%d%d",&n,&m);
for(int i = ;i <= n; i++) {
scanf("%d%d%d",&_c,&_w,&num);
for(int j = ;j <= num; j *= ) {
c[++tot] = j * _c;
w[tot] = j * _w;
num -= j;
}
if(num != ) {
c[++tot] = _c * num;
w[tot] = _w * num;
}
}
for(int i = ;i <= tot; i++)
for(int j = m;j >= w[i]; j--)
f[j] = max(f[j],f[j-w[i]] + c[i]);
printf("%d",f[m]);
return ;
}

洛谷 P1776 宝物筛选(多重背包)的更多相关文章

  1. 洛谷P1776 宝物筛选_NOI导刊2010提高(02)

    P1776 宝物筛选_NOI导刊2010提高(02) 题目描述 终于,破解了千年的难题.小FF找到了王室的宝物室,里面堆满了无数价值连城的宝物……这下小FF可发财了,嘎嘎.但是这里的宝物实在是太多了, ...

  2. 洛谷p1776宝物筛选

    宝物筛选 多重背包问题 物品数目已知 可以枚举每个物品 当做01背包来做 不过会超时 此时需要二进制拆分来优化 分解成新的物品 再跑一遍01背包即可 //二进制拆分+01背包 //设f[j]表示前i件 ...

  3. 洛谷P1776 宝物筛选 题解 多重背包

    题目链接:https://www.luogu.com.cn/problem/P1776 题目大意: 这道题目是一道 多重背包 的模板题. 首先告诉你 n 件物品和背包的容量 V ,然后分别告诉你 n ...

  4. 洛谷P1776 宝物筛选_NOI导刊2010提高(02)(多重背包,单调队列)

    为了学习单调队列优化DP奔向了此题... 基础的多重背包就不展开了.设\(f_{i,j}\)为选前\(i\)个物品,重量不超过\(j\)的最大价值,\(w\)为重量,\(v\)为价值(蒟蒻有强迫症,特 ...

  5. luogu||P1776||宝物筛选||多重背包||dp||二进制优化

    题目描述 终于,破解了千年的难题.小FF找到了王室的宝物室,里面堆满了无数价值连城的宝物……这下小FF可发财了,嘎嘎.但是这里的宝物实在是太多了,小FF的采集车似乎装不下那么多宝物.看来小FF只能含泪 ...

  6. 洛谷P1776 宝物筛选

    一道很好的单调队列优化多重背包入门题 令\(v[i]\)表示重量,\(w[i]\)表示价格 ,\(c[i]\)表示最多可放的数量,不难推出朴素的转移方程如下: \(f[i][j]=max\{f[i-1 ...

  7. 背包问题的优化(洛谷1776 宝物筛选_NOI导刊)

    背包型dp,但是没有看清数据范围差点认为是水题了,(然后诡异的拿了20分)标解是:2进制优化,比较简单把每一类物品看做若干个相互独立的物品,放在一个另外的数组里,然后全局跑一边01就可以.主要思想是: ...

  8. P1776 宝物筛选_NOI导刊2010提高(02)&& 多重背包二进制优化

    多重背包, 要求 \(N\log N\) 复杂度 Solution 众所周和, \(1-N\) 之内的任何数可以由 \(2^{0}, 2^{1}, 2^{2} ... 2^{\log N}, N - ...

  9. 洛谷P1776--宝物筛选(单调队列+多重背包)

    https://www.luogu.org/problemnew/show/P1776 单调队列+多重背包的讲解https://www.cnblogs.com/JoeFan/p/4165956.htm ...

随机推荐

  1. Linux centosVMware shell 管道符和作业控制、shell变量、环境变量配置文件

    一.管道符和作业控制 管道符|,用于将前一个指令的输出作为后一个指令的输入 #cat /etc/passwd|wc -l  作业控制:当运行程序时,可以使它暂停(Ctrl+Z组合键),然后使用fg(f ...

  2. 一、Linux&配置,依赖安装&Tomcat,Mysql,jdk安装

    基础知识: 1 OS Operation System 作用:控制硬件,服务软件 2 VMware虚拟机: 虚拟出一台计算机环境 配置两个虚拟网卡,适配器里查看 3 在虚拟机上安装操作系统Linux ...

  3. BUU easyre

    拖入ida中shift+F12查找字符串就可以看到flag

  4. Net Core3.1 添加 Swagger

    一.为什么使用Swagger 随着互联网技术的发展,现在的网站架构基本都由原来的后端渲染,变成了:前端渲染.后端分离的形态,而且前端技术和后端技术在各自的道路上越走越远. 前端和后端的唯一联系,变成了 ...

  5. 51nod 1378:夹克老爷的愤怒 很好玩的一道树状dp

    1378 夹克老爷的愤怒 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题  收藏  取消关注 夹克老爷逢三抽一之后,由于采用了新师爷的策略,乡民们叫苦不堪,开始组织 ...

  6. 人脸识别 API Key和Secret Key作用

    App key简称API接口验证序号,是用于验证API接入合法性的.接入哪个网站的API接口,就需要这个网站允许才能够接入,如果简单比喻的话:可以理解成是登陆网站的用户名 App Secret简称AP ...

  7. NoSql相关

    1  NoSQL, No Problem: An Intro to NoSQL Databases https://www.thoughtworks.com/insights/blog/nosql-n ...

  8. Numpy中np.random.randn与np.random.rand的区别,及np.mgrid与np.ogrid的理解

    np.random.randn是基于标准正态分布产生的随机数,np.random.rand是基于均匀分布产生的随机数,其值在[0,1). np.mgrid 与np.ogrid的理解及区别:np.mgr ...

  9. Codeforces Round #619 (Div. 2)

    A. Three Strings 题意:给三个长度相同的非空字符串abc,依次将c中的每个字符和a或者b中对应位置的字符进行交换,交换必须进行,问能否使得ab相同. 思路:对于每一个位置,如果三个字符 ...

  10. 一个有意思的html验证码: namesilo验证码

    买域名的时候看到的一个验证码,感觉蛮有意思的(https://www.namesilo.com/create_account.php),这个质感看上去就不一样: 查看页面源码,果然这个验证码是用htm ...