Apache Kafka 是一个可扩展,高性能,低延迟的平台,允许我们像消息系统一样读取和写入数据。我们可以很容易地在 Java 中使用 Kafka

Spark Streaming 是 Apache Spark 的一部分,是一个可扩展、高吞吐、容错的实时流处理引擎。虽然是使用 Scala 开发的,但是支持 Java API。

Apache Cassandra 是分布式的 NoSQL 数据库。

准备

在进行下面文章介绍之前,我们需要先创建好 Kafka 的主题以及 Cassandra 的相关表,具体如下:

在 Kafka 中创建名为 messages 的主题

$KAFKA_HOME$\bin\windows\kafka-topics.bat --create \
 --zookeeper localhost:2181 \
 --replication-factor 1 --partitions 1 \
 --topic messages

Cassandra 中创建 KeySpace 和 table

CREATE KEYSPACE vocabulary
    WITH REPLICATION = {
        'class' : 'SimpleStrategy',
        'replication_factor' : 1
    };
USE vocabulary;
CREATE TABLE words (word text PRIMARY KEY, count int);

上面我们创建了名为 vocabulary 的 KeySpace,以及名为 words 的表。

添加依赖

我们使用 Maven 进行依赖管理,这个项目使用到的依赖如下:

<dependency>
    <groupId>org.apache.spark</groupId>
    <artifactId>spark-core_2.11</artifactId>
    <version>2.3.0</version>
    <scope>provided</scope>
</dependency>
<dependency>
    <groupId>org.apache.spark</groupId>
    <artifactId>spark-sql_2.11</artifactId>
    <version>2.3.0</version>
    <scope>provided</scope>
</dependency>
<dependency>
    <groupId>org.apache.spark</groupId>
    <artifactId>spark-streaming_2.11</artifactId>
    <version>2.3.0</version>
    <scope>provided</scope>
</dependency>
<dependency>
    <groupId>org.apache.spark</groupId>
    <artifactId>spark-streaming-kafka-0-10_2.11</artifactId>
    <version>2.3.0</version>
</dependency>
<dependency>
    <groupId>com.datastax.spark</groupId>
    <artifactId>spark-cassandra-connector_2.11</artifactId>
    <version>2.3.0</version>
</dependency>
<dependency>
    <groupId>com.datastax.spark</groupId>
    <artifactId>spark-cassandra-connector-java_2.11</artifactId>
    <version>1.5.2</version>
</dependency>

数据管道开发

我们将使用 Spark 在 Java 中创建一个简单的应用程序,它将与我们之前创建的Kafka主题集成。应用程序将读取已发布的消息并计算每条消息中的单词频率。 然后将结果更新到 Cassandra 表中。整个数据架构如下:

现在我们来详细介绍代码是如何实现的。

获取 JavaStreamingContext

Spark Streaming 中的切入点是 JavaStreamingContext,所以我们首先需要获取这个对象,如下:

SparkConf sparkConf = new SparkConf();
sparkConf.setAppName("WordCountingApp");
sparkConf.set("spark.cassandra.connection.host", "127.0.0.1");
  
JavaStreamingContext streamingContext = new JavaStreamingContext(
  sparkConf, Durations.seconds(1));

从 Kafka 中读取数据

有了 JavaStreamingContext 之后,我们就可以从 Kafka 对应主题中读取实时流数据,如下:

Map<String, Object> kafkaParams = new HashMap<>();
kafkaParams.put("bootstrap.servers", "localhost:9092");
kafkaParams.put("key.deserializer", StringDeserializer.class);
kafkaParams.put("value.deserializer", StringDeserializer.class);
kafkaParams.put("group.id", "use_a_separate_group_id_for_each_stream");
kafkaParams.put("auto.offset.reset", "latest");
kafkaParams.put("enable.auto.commit", false);
Collection<String> topics = Arrays.asList("messages");
  
JavaInputDStream<ConsumerRecord<String, String>> messages =
  KafkaUtils.createDirectStream(
    streamingContext,
    LocationStrategies.PreferConsistent(),
    ConsumerStrategies.<String, String> Subscribe(topics, kafkaParams));

我们在程序中提供了 key 和 value 的 deserializer。这个是 Kafka 内置提供的。我们也可以根据自己的需求自定义 deserializer。

处理 DStream

我们在前面只是定义了从 Kafka 中哪张表中获取数据,这里我们将介绍如何处理这些获取的数据:

JavaPairDStream<String, String> results = messages
  .mapToPair(
      record -> new Tuple2<>(record.key(), record.value())
  );
JavaDStream<String> lines = results
  .map(
      tuple2 -> tuple2._2()
  );
JavaDStream<String> words = lines
  .flatMap(
      x -> Arrays.asList(x.split("\\s+")).iterator()
  );
JavaPairDStream<String, Integer> wordCounts = words
  .mapToPair(
      s -> new Tuple2<>(s, 1)
  ).reduceByKey(
      (i1, i2) -> i1 + i2
    );

将数据发送到 Cassandra 中

最后我们需要将结果发送到 Cassandra 中,代码也很简单。

wordCounts.foreachRDD(
    javaRdd -> {
      Map<String, Integer> wordCountMap = javaRdd.collectAsMap();
      for (String key : wordCountMap.keySet()) {
        List<Word> wordList = Arrays.asList(new Word(key, wordCountMap.get(key)));
        JavaRDD<Word> rdd = streamingContext.sparkContext().parallelize(wordList);
        javaFunctions(rdd).writerBuilder(
          "vocabulary", "words", mapToRow(Word.class)).saveToCassandra();
      }
    }
  );

启动应用程序

最后,我们需要将这个 Spark Streaming 程序启动起来,如下:

streamingContext.start();
streamingContext.awaitTermination();

使用 Checkpoints

在实时流处理应用中,将每个批次的状态保存下来通常很有用。比如在前面的例子中,我们只能计算单词的当前频率,如果我们想计算单词的累计频率怎么办呢?这时候我们就可以使用 Checkpoints。新的数据架构如下

为了启用 Checkpoints,我们需要进行一些改变,如下:

streamingContext.checkpoint("./.checkpoint");

这里我们将 checkpoint 的数据写入到名为 .checkpoint 的本地目录中。但是在现实项目中,最好使用 HDFS 目录。

现在我们可以通过下面的代码计算单词的累计频率:

JavaMapWithStateDStream<String, Integer, Integer, Tuple2<String, Integer>> cumulativeWordCounts = wordCounts
  .mapWithState(
    StateSpec.function(
        (word, one, state) -> {
          int sum = one.orElse(0) + (state.exists() ? state.get() : 0);
          Tuple2<String, Integer> output = new Tuple2<>(word, sum);
          state.update(sum);
          return output;
        }
      )
    );

部署应用程序

最后,我们可以使用 spark-submit 来部署我们的应用程序,具体如下:

$SPARK_HOME$\bin\spark-submit \
  --class com.baeldung.data.pipeline.WordCountingAppWithCheckpoint \
  --master local[2]
  \target\spark-streaming-app-0.0.1-SNAPSHOT-jar-with-dependencies.jar

最后,我们可以在 Cassandra 中查看到对应的表中有数据生成了。完整的代码可以参见 https://github.com/eugenp/tutorials/tree/master/apache-spark

 

使用 Kafka + Spark Streaming + Cassandra 构建数据实时处理引擎的更多相关文章

  1. Kafka:ZK+Kafka+Spark Streaming集群环境搭建(十一)定制一个arvo格式文件发送到kafka的topic,通过Structured Streaming读取kafka的数据

    将arvo格式数据发送到kafka的topic 第一步:定制avro schema: { "type": "record", "name": ...

  2. Apache Kafka + Spark Streaming Integration

    1.目标 为了构建实时应用程序,Apache Kafka  - Spark Streaming Integration是最佳组合.因此,在本文中,我们将详细了解Kafka中Spark Streamin ...

  3. Kafka:ZK+Kafka+Spark Streaming集群环境搭建(十)安装hadoop2.9.0搭建HA

    如何搭建配置centos虚拟机请参考<Kafka:ZK+Kafka+Spark Streaming集群环境搭建(一)VMW安装四台CentOS,并实现本机与它们能交互,虚拟机内部实现可以上网.& ...

  4. Kafka:ZK+Kafka+Spark Streaming集群环境搭建(九)安装kafka_2.11-1.1.0

    如何搭建配置centos虚拟机请参考<Kafka:ZK+Kafka+Spark Streaming集群环境搭建(一)VMW安装四台CentOS,并实现本机与它们能交互,虚拟机内部实现可以上网.& ...

  5. Kafka:ZK+Kafka+Spark Streaming集群环境搭建(二)安装hadoop2.9.0

    如何搭建配置centos虚拟机请参考<Kafka:ZK+Kafka+Spark Streaming集群环境搭建(一)VMW安装四台CentOS,并实现本机与它们能交互,虚拟机内部实现可以上网.& ...

  6. demo2 Kafka+Spark Streaming+Redis实时计算整合实践 foreachRDD输出到redis

    基于Spark通用计算平台,可以很好地扩展各种计算类型的应用,尤其是Spark提供了内建的计算库支持,像Spark Streaming.Spark SQL.MLlib.GraphX,这些内建库都提供了 ...

  7. 日志=>flume=>kafka=>spark streaming=>hbase

    日志=>flume=>kafka=>spark streaming=>hbase 日志部分 #coding=UTF-8 import random import time ur ...

  8. Spark Streaming揭秘 Day16 数据清理机制

    Spark Streaming揭秘 Day16 数据清理机制 今天主要来讲下Spark的数据清理机制,我们都知道,Spark是运行在jvm上的,虽然jvm本身就有对象的自动回收工作,但是,如果自己不进 ...

  9. Kafka:ZK+Kafka+Spark Streaming集群环境搭建(二十一)NIFI1.7.1安装

    一.nifi基本配置 1. 修改各节点主机名,修改/etc/hosts文件内容. 192.168.0.120 master 192.168.0.121 slave1 192.168.0.122 sla ...

随机推荐

  1. iOS不移除通知也不会崩溃原因

    在iOS9.0之前,通知中心对观察者对象进行unsafe_unretained 引用,当被引用的对象释放时不会自动置为nil,,也就是成了野指针. iOS9.0之后通知中心对观察者做了弱引用. 参考: ...

  2. PIC单片机的for定时

    看到公司的一个项目上的用的for定时 但是网上查找看到<PIC16系列单片机C程序设计与PROTEUS仿真> 上有关于for语句的定时 void Delay(unsigned int n) ...

  3. PHP相关_几个操作记录下

    1.JSON转换 var cloneTesttaskList = <?php echo json_encode(json_encode($cloneTesttaskList));?>; v ...

  4. AdaBoost理解

    AdaBoost是一种准确性很高的分类算法,它的原理是把K个弱分类器(弱分类器的意思是该分类器的准确性较低),通过一定的组合(一般是线性加权进行组合),组合成一个强的分类器,提高分类的准确性. 因此, ...

  5. Nuxt.js

    nuxt.js简单来说是Vue.js的通用框架,最常用的就是SSR(服务端渲染),nuxt.js这个框架,用Vue开发多页面应用,并在服务端完成渲染,可以直接用命令把我们制作的vue项目生成为静态的h ...

  6. wavenet重要概念

    带洞因果卷积 https://img-blog.csdn.net/20181021210509222?watermark/2/text/aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3dl ...

  7. ArcCore重构-打通Can各层ID配置

    https://mp.weixin.qq.com/s/JX7VZwyMqk_9iVMm_N2pxA https://mp.weixin.qq.com/s/5Y8Dt9j1-NQmnjfYhE19dg ...

  8. Multiple annotations found at this line:- The superclass "javax.servlet.http.HttpServlet" was not found on the Java Build Path

    解决办法: 右键所在项目 build path configure build path java build path Add Library server Run time (Apache Tom ...

  9. (Java实现) 拦截导弹

    1260:[例9.4]拦截导弹(Noip1999) 时间限制: 1000 ms 内存限制: 65536 KB 提交数: 4063 通过数: 1477 [题目描述] 某国为了防御敌国的导弹袭击,发展出一 ...

  10. Java实现 计蒜客 拯救行动

    拯救行动 公主被恶人抓走,被关押在牢房的某个地方.牢房用 N \times M (N, M \le 200)N×M(N,M≤200) 的矩阵来表示.矩阵中的每项可以代表道路(@).墙壁(#).和守卫( ...