包子凑数(蓝桥杯)

感谢:@ Statusrank

题目链接(点击)

题目描述

小明几乎每天早晨都会在一家包子铺吃早餐。他发现这家包子铺有N种蒸笼,其中第i种蒸笼恰好能放Ai个包子。每种蒸笼都有非常多笼,可以认为是无限笼。

每当有顾客想买X个包子,卖包子的大叔就会迅速选出若干笼包子来,使得这若干笼中恰好一共有X个包子。比如一共有3种蒸笼,分别能放3、4和5个包子。当顾客想买11个包子时,大叔就会选2笼3个的再加1笼5个的(也可能选出1笼3个的再加2笼4个的)。

当然有时包子大叔无论如何也凑不出顾客想买的数量。比如一共有3种蒸笼,分别能放4、5和6个包子。而顾客想买7个包子时,大叔就凑不出来了。

小明想知道一共有多少种数目是包子大叔凑不出来的。

第一个例子:

2

4

5

输出:

6

输入

第一行包含一个整数N。(1 <= N <= 100)

以下N行每行包含一个整数Ai。(1 <= Ai <= 100)

输出

一个整数代表答案。如果凑不出的数目有无限多个,输出INF。

样例输入

2



6
样例输出

INF

提示

对于样例1,凑不出的数目包括:1, 2, 3, 6, 7, 11。  

对于样例2,所有奇数都凑不出来,所以有无限多个。

思路:

题目说明了包子笼数假设有无限个 想到是完全背包(所有物品种类数假设有无限个)

补充:

1、0-1背包dp: (每种物品只有1个)

  例题:

有重量分别为16 15 15 的三个物品 其价值分别为 30 25 25 要将他们装进承载重量最大为30的包中 计算最大价值是多少?(用dp解决这个问题)

s[i][j] 表示 遍历第i个物品  剩余背包容量为 j

代码如下:

#include<bits/stdc++.h>
using namespace std;
int w[5]={16,15,15},v[5]={30,25,25},dp[55][55];
int main()
{
int n=3,m=30,maxx=-100;
for(int i=0;i<n;i++){
for(int j=0;j<=m;j++){
if(j>=w[i]){
dp[i][j]=max(dp[i-1][j],dp[i-1][j-w[i]]+v[i]);
}
else{
dp[i][j]=dp[i-1][j];
}
if(dp[i][j]>maxx){ //或者是将判断删去 改为直接最后输出dp[n-1][m];
maxx=dp[i][j];
}
}
}
printf("%d\n",maxx);
return 0;
}

2、完全背包dp:

例题 :

重量分别为2 4 8 3价值分别为5 9 18 9 的四件物品 每种物品数量有无限个 背包容量为10 计算最大价值:

   · 注意和0-1 背包的区别:

例如:有重量为2的物品, dp[i][2]的时候放了一件了,当dp[i][4]的时候,dp[i][4]=max(dp[i-1][4],dp[i][4-2]+w[i]) 最多放一件

代码如下:

#include<bits/stdc++.h>
using namespace std;
const int maxn=105;
int dp[maxn][55];
int w[maxn+5],v[maxn+5];
int n,m;
int main()
{
int i,j,k;
while(~scanf("%d %d",&n,&m)){
memset(dp,0,sizeof(dp));
for(i=1;i<=n;i++){
scanf("%d %d",&w[i],&v[i]);
}
for(i=1;i<=n;i++){
for(j=0;j<=m;j++){
if(j>=w[i]){
dp[i][j]=max(dp[i-1][j],dp[i][j-w[i]]+v[i]);//注意和01背包的区别,这里是
dp[i][j-need[i]]+value[i]
}
else{
dp[i][j]=dp[i-1][j];
}
}
}
printf("%d\n",dp[n-1][m]);
}
return 0;
}

这个题和上面有点差别 没有价格的区别所以我开始就把物品重量当成价值 最后判断背包是否被填满 但是数目大了就会错误 不得不放弃 看了@ Statusrank的讲解才明白我想复杂了   链接(点击)

先遍历每个a[i] 然后将对应的dp值改变

往后再遍历的时候 直接dp[j]=dp[ j-a[i] ]

例如 :

a1=4,a2=5:前提 令dp[0]=1(下面解释为甚麽)

先遍历4 将 4和其倍数的值变为1 因为dp[j]=dp[ j-a[i] ]

当j=4时 dp[4]=dp[4-a[1]]=dp[0]=1;

再遍历5的时候会将5 的倍数变为1(同理)

同时 当j=9时: dp[9]=dp[9-a[2]]=dp[4]=1; 也会将其他5 和4组成的数的dp赋值为1

AC代码:

#include<bits/stdc++.h>
using namespace std;
const int MAX=1e5;
int dp[MAX+5],a[105];
int main()
{
int n,count=0;
scanf("%d",&n);
for(int i=0;i<n;i++){
scanf("%d",&a[i]);
if(a[i]%2==0){
count++;
}
}
if(count==n){
printf("INF\n");
}
else{
count=0;
dp[0]=1;
for(int i=0;i<n;i++){
for(int j=a[i];j<=MAX+5;j++){
dp[j]=max(dp[j],dp[j-a[i]]);
}
}
for(int i=1;i<MAX+5;i++){
if(dp[i]==0){
count++;
}
}
printf("%d\n",count);
}
return 0;
}

包子凑数(dp 0-1、完全背包)【背包问题】的更多相关文章

  1. 包子凑数(dp思想)

    问题描述: 小明几乎每天早晨都会在一家包子铺吃早餐.他发现这家包子铺有N种蒸笼,其中第i种蒸笼恰好能放Ai个包子.每种蒸笼都有非常多笼,可以认为是无限笼.每当有顾客想买X个包子,卖包子的大叔就会迅速选 ...

  2. DP大作战——多重背包

    题目描述 在之前的上机中,零崎已经出过了01背包和完全背包,也介绍了使用-1初始化容量限定背包必须装满这种小技巧,接下来的背包问题相对有些难度,可以说是01背包和完全背包的进阶问题. 多重背包:物品可 ...

  3. 水dp第二天(背包有关)

    水dp第二天(背包有关) 标签: dp poj_3624 题意:裸的01背包 注意:这种题要注意两个问题,一个是要看清楚数组要开的范围大小,然后考虑需要空间优化吗,还有事用int还是long long ...

  4. dp之多维背包hdu2159

    二维背包问题,我是觉得这个题目数据比较水,虽然它最后说了怪可以无限个,但是它却只能最多杀s个,也就是所有品种的怪最多为s个,那么就是二维完全背包的问题了.......同时,它没有说一定要杀s只怪,所以 ...

  5. c++_包子凑数

    标题:包子凑数 小明几乎每天早晨都会在一家包子铺吃早餐.他发现这家包子铺有N种蒸笼,其中第i种蒸笼恰好能放Ai个包子.每种蒸笼都有非常多笼,可以认为是无限笼. 每当有顾客想买X个包子,卖包子的大叔就会 ...

  6. Java实现第八届蓝桥杯包子凑数

    包子凑数 题目描述 小明几乎每天早晨都会在一家包子铺吃早餐.他发现这家包子铺有N种蒸笼,其中第i种蒸笼恰好能放Ai个包子.每种蒸笼都有非常多笼,可以认为是无限笼. 每当有顾客想买X个包子,卖包子的大叔 ...

  7. DP大作战—组合背包

    题目描述 组合背包:有的物品只可以取一次(01背包),有的物品可以取无限次(完全背包),有的物品可以取的次数有一个上限(多重背包). DD大牛的伪代码 for i = 1 to N if 第i件物品属 ...

  8. 树形DP(01组合背包The Ghost Blows Light HDU4276)

    题意:有n个房间,之间用n-1条道路连接,每个房间都有一个定时炸弹,在T时间后会一起爆炸,第i个房间有pi价值的珠宝,经过每条道路都需要花费一定的时间,一个人从1房间开始 ,从n房间出去,保证再不炸死 ...

  9. dp之二维背包poj1837(天平问题 推荐)

    题意:给你c(2<=c<=20)个挂钩,g(2<=g<=20)个砝码,求在将所有砝码(砝码重1~~25)挂到天平(天平长  -15~~15)上,并使得天平平衡的方法数..... ...

随机推荐

  1. VMware Workstation如何修改弹出释放快捷键

    VMware Workstation默认使用Ctrl+Alt键就可以将鼠标从虚拟机脱离出来. 但有时这2个键可能会和其他软件的快捷键冲突,这时候如何设置快捷键呢: 打开WMware Workstati ...

  2. tp入门

    其中可以配置隐藏看入口文件 和默认读取路径 <?php namespace app\admin\controller; //生命控制器 class Index { public function ...

  3. python中几个双下划线用法的含义

    _ _ init() _ _(self[,...]) 我们有时在类定义写__init()__方法,但是有时又没有.__init()__方法相当于其他面向对象的编程语言中的构造方法,也就是类在实例化成对 ...

  4. 前端内网穿透,localtunnel你值得拥有!

    一个前端在调试本地页面时,总会有些稀奇古怪的需求,比如产品立刻要看你的页面效果,而此时有没有上线环境折腾给他看,那此时通过内网穿透的方式,实时把你的项目生成一个在线链接丢给他,让他去找那一像素的bug ...

  5. Redis学习笔记(4)

    一.Redis主从复制 1. 概念 为了避免服务的单点故障,会把数据复制到多个副本放在不同的服务器上,且这些拥有数据副本的服务器可以用于处理客户端的读请求,扩展整体的性能.我们把这种机制称之为主从复制 ...

  6. noip2019(普及组) 公交换乘 (不剪枝见祖宗题)

    luogu题目传送门 其实就是一道普普通通的模拟题,但是1e5的数据让很多不看数据范围和不加优化的小伙伴们莫名其妙的T了.(包括我) 因此,论减枝的重要性!! 于是乎,最重要的一点也就出来了.早就过期 ...

  7. [书籍分享]0-001.rework(重来:更为简单有效的商业思维)

    封面    内容简介 大多数的企业管理的书籍都会告诉你:制定商业计划.分析竞争形势.寻找投资人等等.如果你要找的是那样的书,那么把这本书放回书架吧. 这本书呈现的是一种更好.更简单的经商成功之道.读完 ...

  8. Java并发编程 (六) 线程安全策略

    个人博客网:https://wushaopei.github.io/    (你想要这里多有) 一.不可变对象-1 有一种安全的发布对象,即不可变对象. 1.不可变对象需要满足的条件 ① 对象创建以后 ...

  9. 第九届蓝桥杯JavaC组决(国)赛真题

    1:年龄问题 s夫人一向很神秘.这会儿有人问起她的年龄,她想了想说: "20年前,我丈夫的年龄刚好是我的2倍,而现在他的年龄刚好是我的1.5倍". 你能算出s夫人现在的年龄吗? 这 ...

  10. Java实现 LeetCode 820 单词的压缩编码(字典树)

    820. 单词的压缩编码 给定一个单词列表,我们将这个列表编码成一个索引字符串 S 与一个索引列表 A. 例如,如果这个列表是 ["time", "me", & ...