使用TensorFlow v2.0构建一个两层隐藏层完全连接的神经网络(多层感知器)。

这个例子使用低级方法来更好地理解构建神经网络和训练过程背后的所有机制。

神经网络概述

MNIST 数据集概述

此示例使用手写数字的MNIST数据集。该数据集包含60,000个用于训练的示例和10,000个用于测试的示例。这些数字已经过尺寸标准化并位于图像中心,图像是固定大小(28x28像素),值为0到255。

在此示例中,每个图像将转换为float32并归一化为[0,1],并展平为784个特征的一维数组(28 * 28)

更多信息请查看链接: http://yann.lecun.com/exdb/mnist/

from __future__ import absolute_import, division, print_function

import tensorflow as tf
import numpy as np
# MNIST 数据集参数
num_classes = 10 # 所有类别(数字 0-9)
num_features = 784 # 数据特征数目 (图像形状: 28*28) # 训练参数
learning_rate = 0.001
training_steps = 3000
batch_size = 256
display_step = 100 # 网络参数
n_hidden_1 = 128 # 第一层隐含层神经元的数目
n_hidden_2 = 256 # 第二层隐含层神经元的数目
# 准备MNIST数据
from tensorflow.keras.datasets import mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
# 转化为float32
x_train, x_test = np.array(x_train, np.float32), np.array(x_test, np.float32)
# 将每张图像展平为具有784个特征的一维向量(28 * 28)
x_train, x_test = x_train.reshape([-1, num_features]), x_test.reshape([-1, num_features])
# 将图像值从[0,255]归一化到[0,1]
x_train, x_test = x_train / 255., x_test / 255.
# 使用tf.data API对数据进行随机排序和批处理
train_data = tf.data.Dataset.from_tensor_slices((x_train, y_train))
train_data = train_data.repeat().shuffle(5000).batch(batch_size).prefetch(1)
# 存储层的权重和偏置

# 随机值生成器初始化权重
random_normal = tf.initializers.RandomNormal() weights = {
'h1': tf.Variable(random_normal([num_features, n_hidden_1])),
'h2': tf.Variable(random_normal([n_hidden_1, n_hidden_2])),
'out': tf.Variable(random_normal([n_hidden_2, num_classes]))
}
biases = {
'b1': tf.Variable(tf.zeros([n_hidden_1])),
'b2': tf.Variable(tf.zeros([n_hidden_2])),
'out': tf.Variable(tf.zeros([num_classes]))
}
# 创建模型
def neural_net(x):
# Hidden fully connected layer with 128 neurons.
# 具有128个神经元的隐含完全连接层
layer_1 = tf.add(tf.matmul(x, weights['h1']), biases['b1'])
# Apply sigmoid to layer_1 output for non-linearity.
# 将sigmoid用于layer_1输出以获得非线性
layer_1 = tf.nn.sigmoid(layer_1) # 具有128个神经元的隐含完全连接层
layer_2 = tf.add(tf.matmul(layer_1, weights['h2']), biases['b2'])
# 将sigmoid用于layer_2输出以获得非线性
layer_2 = tf.nn.sigmoid(layer_2) # 输出完全连接层,每一个神经元代表一个类别
out_layer = tf.matmul(layer_2, weights['out']) biases['out']
# 应用softmax将输出标准化为概率分布
return tf.nn.softmax(out_layer)
# 交叉熵损失函数
def cross_entropy(y_pred, y_true):
# 将标签编码为独热向量
y_true = tf.one_hot(y_true, depth=num_classes)
# 将预测值限制在一个范围之内以避免log(0)错误
y_pred = tf.clip_by_value(y_pred, 1e-9, 1.)
# 计算交叉熵
return tf.reduce_mean(-tf.reduce_sum(y_true * tf.math.log(y_pred))) # 准确率评估
def accuracy(y_pred, y_true):
# 预测类是预测向量中最高分的索引(即argmax)
correct_prediction = tf.equal(tf.argmax(y_pred, 1), tf.cast(y_true, tf.int64))
return tf.reduce_mean(tf.cast(correct_prediction, tf.float32), axis=-1) # 随机梯度下降优化器
optimizer = tf.optimizers.SGD(learning_rate)
# 优化过程
def run_optimization(x, y):
# 将计算封装在GradientTape中以实现自动微分
with tf.GradientTape() as g:
pred = neural_net(x)
loss = cross_entropy(pred, y) # 要更新的变量,即可训练的变量
trainable_variables = weights.values() biases.values() # 计算梯度
gradients = g.gradient(loss, trainable_variables) # 按gradients更新 W 和 b
optimizer.apply_gradients(zip(gradients, trainable_variables))
# 针对给定步骤数进行训练
for step, (batch_x, batch_y) in enumerate(train_data.take(training_steps), 1):
# 运行优化以更新W和b值
run_optimization(batch_x, batch_y) if step % display_step == 0:
pred = neural_net(batch_x)
loss = cross_entropy(pred, batch_y)
acc = accuracy(pred, batch_y)
print("step: %i, loss: %f, accuracy: %f" % (step, loss, acc))

output:

step: 100, loss: 567.292969, accuracy: 0.136719
step: 200, loss: 398.614929, accuracy: 0.562500
step: 300, loss: 226.743774, accuracy: 0.753906
step: 400, loss: 193.384521, accuracy: 0.777344
step: 500, loss: 138.649963, accuracy: 0.886719
step: 600, loss: 109.713669, accuracy: 0.898438
step: 700, loss: 90.397217, accuracy: 0.906250
step: 800, loss: 104.545380, accuracy: 0.894531
step: 900, loss: 94.204697, accuracy: 0.890625
step: 1000, loss: 81.660645, accuracy: 0.906250
step: 1100, loss: 81.237137, accuracy: 0.902344
step: 1200, loss: 65.776703, accuracy: 0.925781
step: 1300, loss: 94.195862, accuracy: 0.910156
step: 1400, loss: 79.425507, accuracy: 0.917969
step: 1500, loss: 93.508163, accuracy: 0.914062
step: 1600, loss: 88.912506, accuracy: 0.917969
step: 1700, loss: 79.033607, accuracy: 0.929688
step: 1800, loss: 65.788315, accuracy: 0.898438
step: 1900, loss: 73.462387, accuracy: 0.937500
step: 2000, loss: 59.309540, accuracy: 0.917969
step: 2100, loss: 67.014008, accuracy: 0.917969
step: 2200, loss: 48.297115, accuracy: 0.949219
step: 2300, loss: 64.523148, accuracy: 0.910156
step: 2400, loss: 72.989517, accuracy: 0.925781
step: 2500, loss: 57.588585, accuracy: 0.929688
step: 2600, loss: 44.957100, accuracy: 0.960938
step: 2700, loss: 59.788242, accuracy: 0.937500
step: 2800, loss: 63.581337, accuracy: 0.937500
step: 2900, loss: 53.471252, accuracy: 0.941406
step: 3000, loss: 43.869728, accuracy: 0.949219
# 在验证集上测试模型
pred = neural_net(x_test)
print("Test Accuracy: %f" % accuracy(pred, y_test))
# 可视化预测
import matplotlib.pyplot as plt # 从验证集中预测5张图像
n_images = 5
test_images = x_test[:n_images]
predictions = neural_net(test_images) # 显示图片和模型预测结果
for i in range(n_images):
plt.imshow(np.reshape(test_images[i], [28, 28]), cmap='gray')
plt.show()
print("Model prediction: %i" % np.argmax(predictions.numpy()[i]))

output:



Model prediction: 7



Model prediction:2



Model prediction: 1



Model prediction: 0



Model prediction: 4

欢迎关注磐创博客资源汇总站:

http://docs.panchuang.net/

欢迎关注PyTorch官方中文教程站:

http://pytorch.panchuang.net/

使用TensorFlow v2.0构建多层感知器的更多相关文章

  1. 使用TensorFlow v2.0构建卷积神经网络

    使用TensorFlow v2.0构建卷积神经网络. 这个例子使用低级方法来更好地理解构建卷积神经网络和训练过程背后的所有机制. CNN 概述 MNIST 数据集概述 此示例使用手写数字的MNIST数 ...

  2. TensorFlow—多层感知器—MNIST手写数字识别

    1 import tensorflow as tf import tensorflow.examples.tutorials.mnist.input_data as input_data import ...

  3. tensorflow学习笔记——自编码器及多层感知器

    1,自编码器简介 传统机器学习任务很大程度上依赖于好的特征工程,比如对数值型,日期时间型,种类型等特征的提取.特征工程往往是非常耗时耗力的,在图像,语音和视频中提取到有效的特征就更难了,工程师必须在这 ...

  4. TFboy养成记 多层感知器 MLP

    内容总结与莫烦的视频. 这里多层感知器代码写的是一个简单的三层神经网络,输入层,隐藏层,输出层.代码的目的是你和一个二次曲线.同时,为了保证数据的自然,添加了mean为0,steddv为0.05的噪声 ...

  5. 【TensorFlow-windows】(三) 多层感知器进行手写数字识别(mnist)

    主要内容: 1.基于多层感知器的mnist手写数字识别(代码注释) 2.该实现中的函数总结 平台: 1.windows 10 64位 2.Anaconda3-4.2.0-Windows-x86_64. ...

  6. "多层感知器"--MLP神经网络算法

    提到人工智能(Artificial Intelligence,AI),大家都不会陌生,在现今行业领起风潮,各行各业无不趋之若鹜,作为技术使用者,到底什么是AI,我们要有自己的理解. 目前,在人工智能中 ...

  7. TensorFlow v2.0实现Word2Vec算法

    使用TensorFlow v2.0实现Word2Vec算法计算单词的向量表示,这个例子是使用一小部分维基百科文章来训练的. 更多信息请查看论文: Mikolov, Tomas et al. " ...

  8. 4.2tensorflow多层感知器MLP识别手写数字最易懂实例代码

    自己开发了一个股票智能分析软件,功能很强大,需要的点击下面的链接获取: https://www.cnblogs.com/bclshuai/p/11380657.html 1.1  多层感知器MLP(m ...

  9. Spark Multilayer perceptron classifier (MLPC)多层感知器分类器

    多层感知器分类器(MLPC)是基于前馈人工神经网络(ANN)的分类器. MLPC由多个节点层组成. 每个层完全连接到网络中的下一层. 输入层中的节点表示输入数据. 所有其他节点,通过输入与节点的权重w ...

随机推荐

  1. Go技术日报(2020-02-28)

    go 语言中文网(每日资讯)_2020-02-28 一.Go 语言中文网 Gopher 学习效率低怎么办?曹大谈工程师应该怎么学习 Go 的 http 包中默认路由匹配规则 [每日一库]Web 表单验 ...

  2. JS实现总价随数量变化而变化(顾客购买商品表单)

    */ * Copyright (c) 2016,烟台大学计算机与控制工程学院 * All rights reserved. * 文件名:test.html * 作者:常轩 * 微信公众号:Worldh ...

  3. python基础-基本概念

    python概念介绍 python是一门动态解释型的强类型定义语言,创始人吉多·范罗苏姆(Guido van Rossum) #编译型语言 编译型:一次性将所有程序编译成二进制文件 缺点:开发效率低, ...

  4. #2020.1.26笔记——springdatajpa

    2020.1.26笔记--springdatajpa 使用jpa的步骤: 1. 导入maven坐标 <?xml version="1.0" encoding="UT ...

  5. SpringBoot图文教程11—从此不写mapper文件「SpringBoot集成MybatisPlus」

    有天上飞的概念,就要有落地的实现 概念十遍不如代码一遍,朋友,希望你把文中所有的代码案例都敲一遍 先赞后看,养成习惯 SpringBoot 图文教程系列文章目录 SpringBoot图文教程1「概念+ ...

  6. YiGo表单建立

    做一个请假单表单(下图是最后的成品图) 表单的类型 实体表单 1.可存储 2.可编辑 虚拟表单 视图(不可存储数据,只有显示功能) 不可编辑 字典 报表 备注 :一张表单是实体还是虚拟取决于其数据对象 ...

  7. vue项目npm run dev 报错Uncaught SyntaxError: Unexpected token <

    目前代码所处位置是micro分支,该分支是从dev分支直接拉下来进行npm run dev的,而dev分支是可以正常运行的,网上的诸多解释是babel转义时候报错,其实对比可见,两个分支不同的地方应该 ...

  8. Python线性优化基础讲解~

    目前,各组织正在利用数据科学和机器学习来解决各种业务问题.为了创造一个真正的业务影响,如何弥合数据科学管道和业务决策管道之间的差距显得尤为重要. 数据科学管道的结果往往是数据中的预测.模式和洞察(通常 ...

  9. AX2012/D365 SSRS报表开发

    大家好,好久没有做SSRS报表了,近期刚好有做2张,就整理起来供初学者参考. AX中SSRS报表开发的框架,父类非常多,这里跟大家简单分享2种比较常用的场景供大家使用. 1.简单的过滤字段,无特殊过滤 ...

  10. Linux双网卡绑定配置

    Linux双网卡绑定配置                                       环境介绍 Linux Redhat 6.5.4张网卡 需求 4张网卡两两绑定,4张网卡分别是eth ...