即使我们从理论上理解了卷积神经网络,在实际进行将数据拟合到网络时,很多人仍然对其网络的输入和输出形状(shape)感到困惑。本文章将帮助你理解卷积神经网络的输入和输出形状。

让我们看看一个例子。CNN的输入数据如下图所示。我们假设我们的数据是图像的集合。

输入的形状

你始终必须将4D数组作为CNN的输入。因此,输入数据的形状为(batch_size,height,width,depth),其中第一维表示图像的batch大小,其他三个维表示图像的各个属性,即高度,宽度和深度。深度就是色彩通道的数量。例如,RGB图像的深度为3,而灰度图像的深度为1。

输出形状

CNN的输出也是4D数组。其中batch大小将与输入batch大小相同,但是图像的其他3个尺寸可能会根据滤波器(filter) ,内核大小(kernel size)和填充值(padding)而变化。

让我们看一下下面的代码片段。

不要在这里被input_shape参数欺骗,以为输入形状是3D,但是在进行训练时必须传递一个4D数组,该数据的形状应该是(batchsize,10,10,3)。由于inputshape参数中没有batch值,因此在拟合数据时可以采用任何batch大小。

而且正如你所见,输出的形状为(None,10,10,64)。第一个维度表示batch大小,目前为"None"。因为网络事先不知道batch大小。拟合数据后,将使用拟合数据时给出的batch大小来代替"None"。

让我们看看另一个代码片段。

在这里,我将inputshape参数替换为batchinput_shape。顾名思义,此参数将事先提供batch大小,并且在拟合数据时你无法提供任何其他batch大小。例如,在本例你必须用batch大小为16的数据来拟合网络。

你可以从上图看到输出形状的batch大小是16而不是None。

在卷积层上附加全连接(Dense)层

我们可以简单地在另一个卷积层的顶部添加一个卷积层,因为卷积的输出维度数与输入维度数相同。

通常,我们在卷积层的顶部添加Dense层以对图像进行分类。但是,Dense层需要形状为(batch_size,units)的数据。卷积层的输出是4D的数组。因此,我们必须将从卷积层接收的输出的尺寸更改为2D数组。

我们可以通过在卷积层的顶部插入一个Flatten层来做到这一点。Flatten层将3维图像变形成一个维。现在我们得到一个2D形状的数组(batchsize,squashedsize),这是Dense层需要的输入形状。

汇总

  • 你始终必须将形状为(batch_size, height, width, depth)的4D数组输入CNN。
  • CNN的输出数据也是形状(batch_size, height, width, depth)的4D数组。
  • 要在CNN层的顶部添加一个Dense层,我们必须使用keras的Flatten层将CNN的4D输出更改为2D。

欢迎关注磐创博客资源汇总站:http://docs.panchuang.net/

欢迎关注PyTorch官方中文教程站:http://pytorch.panchuang.net/

理解卷积神经网络中的输入与输出形状(Keras实现)的更多相关文章

  1. 理解卷积神经网络中的channel

    在一般的深度学习框架的 conv2d 中,如 tensorflow.mxnet,channel 都是必填的一个参数 在 tensorflow 中,对于输入样本中 channels 的含义,一般是RGB ...

  2. CNN笔记:通俗理解卷积神经网络【转】

    本文转载自:https://blog.csdn.net/v_july_v/article/details/51812459 通俗理解卷积神经网络(cs231n与5月dl班课程笔记) 1 前言 2012 ...

  3. CNN笔记:通俗理解卷积神经网络

    CNN笔记:通俗理解卷积神经网络 2016年07月02日 22:14:50 v_JULY_v 阅读数 250368更多 分类专栏: 30.Machine L & Deep Learning 机 ...

  4. 卷积神经网络中的通道 channel

    卷积神经网络中 channels 分为三种:    (1):最初输入的图片样本的 channels ,取决于图片类型,比如RGB, channels=3    (2):卷积操作完成后输出的 out_c ...

  5. 卷积神经网络中的Winograd快速卷积算法

    目录 写在前面 问题定义 一个例子 F(2, 3) 1D winograd 1D to 2D,F(2, 3) to F(2x2, 3x3) 卷积神经网络中的Winograd 总结 参考 博客:blog ...

  6. (转)MyBatis框架的学习(四)——Mapper.xml文件中的输入和输出映射以及动态sql

    http://blog.csdn.net/yerenyuan_pku/article/details/71893689 前面对MyBatis框架的学习中,我们对Mapper.xml映射文件多少有些了解 ...

  7. tensorflow CNN 卷积神经网络中的卷积层和池化层的代码和效果图

    tensorflow CNN 卷积神经网络中的卷积层和池化层的代码和效果图 因为很多 demo 都比较复杂,专门抽出这两个函数,写的 demo. 更多教程:http://www.tensorflown ...

  8. 卷积神经网络中的channel 和filter

    在深度学习的算法学习中,都会提到 channels 这个概念.在一般的深度学习框架的 conv2d 中,如 tensorflow .mxnet,channels 都是必填的一个参数. channels ...

  9. python中的输入和输出

    输入和输出   输出: 用print()在括号中加上字符串,就可以向屏幕上输出指定的文字.比如输出'hello, world',用代码实现如下: >>> print('hello, ...

随机推荐

  1. springboot+jwt实现token登陆权限认证

    一 前言 此篇文章的内容也是学习不久,终于到周末有时间码一篇文章分享知识追寻者的粉丝们,学完本篇文章,读者将对token类的登陆认证流程有个全面的了解,可以动态搭建自己的登陆认证过程:对小项目而已是个 ...

  2. MYSQL对数据库和表的基本操作

    CREATE DATABASE testdb CHARSET=UTF8 创建一个数据库 名字叫做testdb USE testdb; 选择数据库 CREATE TABLE testTable1( ) ...

  3. ODI学习资料

    ODI12.2.1.4入门指南:https://docs.oracle.com/en/middleware/fusion-middleware/data-integrator/12.2.1.4/ind ...

  4. ado.net DataSet

    一.概念 DataSet是ADO.NET的中心概念.可以把DataSet当成内存中的数据库,DataSet是不依赖于数据库的独立数据集合.所谓独立,就是说,即使断开数据链路,或者关闭数据库,DataS ...

  5. session和el表达式

    2015/1/21 ## 回顾昨天案例 ## # 模拟购物车: >> 基本步骤: |-- 显示所有的书籍: |-- 制作书记列表/模仿数据库: |-- 参见昨天示例: |-- 制作查看详情 ...

  6. AOP面试知识整理,^_^-包括spring Aop

    讲到java企业级开发框架,就不可避免的讲到 IOC,AOP,MCV 今天面试时被问到AOP,讲的很乱,这里整理笔记,包括AOP,spring-AOP的部分知识,错误的地方请小伙伴指出来. 谈谈你对A ...

  7. 处理 Vue 单页面 SEO 的另一种思路

    vue-meta-info 官方地址: https://github.com/monkeyWang... (设置vue 单页面meta info信息,如果需要单页面SEO,可以和 prerender- ...

  8. python从一个目录中复制全部文件图片至另一个目录中,及删除指定目录中的图片

    import shutil import os #目录自己改一下即可,复制 path = "./static/imgs/" new_path = "./static/up ...

  9. 第三篇:Linux的基本操作与文件管理(纯命令行模式下)(下)

    接上篇介绍完软件的管理(查询.删除.安装)之后,本篇将介绍Linux的文件和目录的管理. 如何浏览Linux的目录(文件夹),就像Windows一样,我们平时需要打开各个目录,去里面找一找曾经悄悄存储 ...

  10. 龙叔拿了20几个offer,原因竟有些泪目...

    我是龙叔,一个分享互联网技术和心路历程的大叔. 本文已经收录至我的GitHub,欢迎大家踊跃star 和 issues. https://github.com/midou-tech/articles ...