1745 Divisibility
Divisibility
Time Limit: 1000MS Memory Limit: 10000K
Total Submissions: 14084 Accepted: 4989
Description
Consider an arbitrary sequence of integers. One can place + or - operators between integers in the sequence, thus deriving different arithmetical expressions that evaluate to different values. Let us, for example, take the sequence: 17, 5, -21, 15. There are eight possible expressions: 17 + 5 + -21 + 15 = 16
17 + 5 + -21 - 15 = -14
17 + 5 - -21 + 15 = 58
17 + 5 - -21 - 15 = 28
17 - 5 + -21 + 15 = 6
17 - 5 + -21 - 15 = -24
17 - 5 - -21 + 15 = 48
17 - 5 - -21 - 15 = 18
We call the sequence of integers divisible by K if + or - operators can be placed between integers in the sequence in such way that resulting value is divisible by K. In the above example, the sequence is divisible by 7 (17+5±21-15=-14) but is not divisible by 5.
You are to write a program that will determine divisibility of sequence of integers.
Input
The first line of the input file contains two integers, N and K (1 <= N <= 10000, 2 <= K <= 100) separated by a space.
The second line contains a sequence of N integers separated by spaces. Each integer is not greater than 10000 by it’s absolute value.
Output
Write to the output file the word “Divisible” if given sequence of integers is divisible by K or “Not divisible” if it’s not.
Sample Input
4 7
17 5 -21 15
Sample Output
Divisible
Source
Northeastern Europe 1999
这是简单DP水题,WA了几次,初学的时候这个题还是有必要看看!!
#include <cstdio>
#include <iostream>
#include <cstring>
#include <algorithm>
#include <map>
#include <cstdlib>
using namespace std;
#define mod(a) (a)<0? (-(a))%k:(a)%k
#define mem(a,b) memset((a),(b),sizeof(a));
int dp[10005][105];
int a[10005];
int main(){
// freopen("test.txt","r",stdin);
mem(dp,0);
int n,k;
cin>>n>>k;
for(int i=1;i<=n;i++)
cin>>a[i];
dp[1][mod(a[1])]=1;
for(int i=2;i<=n;i++)
for(int j=0;j<k;j++)
if(dp[i-1][j])
{
dp[i][mod(j+a[i])]=1;
dp[i][mod(j-a[i])]=1;
}
if(dp[n][0]) cout<<"Divisible";
else cout<<"Not divisible";
return 0;}
1745 Divisibility的更多相关文章
- POJ 1745 Divisibility (线性dp)
Divisibility Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 10598 Accepted: 3787 Des ...
- POJ 1745 Divisibility
Divisibility Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 9476 Accepted: 3300 Desc ...
- POJ 1745 Divisibility DP
POJ:http://poj.org/problem?id=1745 A完这题去买福鼎肉片,和舍友去买滴~舍友感慨"这一天可以卖好几百份,每份就算赚一块钱..那么一个月..一年...&quo ...
- POJ 1745 Divisibility【DP】
题意:给出n,k,n个数,在这n个数之间任意放置+,-号,称得到的等式的值能够整除k则为可划分的,否则为不可划分的. 自己想的是枚举,将所有得到的等式的和算出来,再判断它是否能够整除k,可是有1000 ...
- POJ 1745 【0/1 背包】
题目链接:http://poj.org/problem?id=1745 Divisibility Time Limit: 1000MS Memory Limit: 10000K Total Sub ...
- dp题目列表
此文转载别人,希望自己能够做完这些题目! 1.POJ动态规划题目列表 容易:1018, 1050, 1083, 1088, 1125, 1143, 1157, 1163, 1178, 1179, 11 ...
- poj 动态规划题目列表及总结
此文转载别人,希望自己能够做完这些题目! 1.POJ动态规划题目列表 容易:1018, 1050, 1083, 1088, 1125, 1143, 1157, 1163, 1178, 1179, 11 ...
- [转] POJ DP问题
列表一:经典题目题号:容易: 1018, 1050, 1083, 1088, 1125, 1143, 1157, 1163, 1178, 1179, 1189, 1191,1208, 1276, 13 ...
- poj动态规划列表
[1]POJ 动态规划题目列表 容易: 1018, 1050, 1083, 1088, 1125, 1143, 1157, 1163, 1178, 1179, 1189, 1208, 1276, 13 ...
随机推荐
- DVWA系列精品教程:2、命令注入
文章更新于:2020-04-11 注:如何搭建环境参见:搭建DVWA Web渗透测试靶场 DVWA之命令注入漏洞 一.介绍 1.1.官方说明 1.2.总结 二.命令注入实践 2.1.安全级别:LOW ...
- django-rest-framework权限验证
django-rest-framework权限验证 在项目根目录下新建utils的文件 新建permissions.py from rest_framework.permissions import ...
- uni-app商城项目(01)
1.项目准备: 1.新建项目,清理项目结构 2.完成项目初始化配置. 2.项目开始阶段: 1.完成tabBar配置,新建需要的页面 2.在 '/utis'封装需要的发送请求api,有利于功能的实现. ...
- Linux学习,账号管理与权限管理
linux系统本来不认识账号,只是通过UID(用户ID)和GID(所属组ID)来区分账号属性的.而这对应的目录如下: UID ===> /etc/passwd GID ===> /etc/ ...
- coding++:java 线程池概述
前言: 1):创建一个可缓存线程池 2):创建一个可重用固定个数的线程池,以共享的无界队列方式来运行这些线程. 3):创建一个定长线程池,支持定时及周期性任务执行 4):创建一个单线程化的线程池,它只 ...
- 2、使用断言(json assertion)
1.假设现在有一个服务端的返回数据(需要测试的)为:HTTP/1.1 200 OK,要测试的响应字段勾选Response Headers,模式匹配规则选择Substring,把该响应断言命名为Http ...
- SpringMVC框架详细教程(六)_HelloWorld
HelloWorld 在src下创建包com.pudding.controller,然后创建一个类HelloWorldController: package com.pudding.controlle ...
- SpringBoot事件监听机制源码分析(上) SpringBoot源码(九)
SpringBoot中文注释项目Github地址: https://github.com/yuanmabiji/spring-boot-2.1.0.RELEASE 本篇接 SpringApplicat ...
- (转) Windows Mobile和Windows CE的区别
转发自 http://blog.sina.com.cn/s/blog_6250bbe60100tsf3.html WinCE Windows CE 是一个可定制的操作系统: Windows Mobil ...
- linux基础知识点扫描
1.tty:查看自己的虚拟终端 2.echo "你的服务器已经被我控制,请立刻打钱给我,账号12312312312314123421,否则后果自负!!!" > /dev/ ...