图论--网络流--最大流 POJ 2289 Jamie's Contact Groups (二分+限流建图)
Description
Jamie is a very popular girl and has quite a lot of friends, so she always keeps a very long contact list in her cell phone. The contact list has become so long that it often takes a long time for her to browse through the whole list to find a friend's number. As Jamie's best friend and a programming genius, you suggest that she group the contact list and minimize the size of the largest group, so that it will be easier for her to search for a friend's number among the groups. Jamie takes your advice and gives you her entire contact list containing her friends' names, the number of groups she wishes to have and what groups every friend could belong to. Your task is to write a program that takes the list and organizes it into groups such that each friend appears in only one of those groups and the size of the largest group is minimized.
Input
There will be at most 20 test cases. Ease case starts with a line containing two integers N and M. where N is the length of the contact list and M is the number of groups. N lines then follow. Each line contains a friend's name and the groups the friend could belong to. You can assume N is no more than 1000 and M is no more than 500. The names will contain alphabet letters only and will be no longer than 15 characters. No two friends have the same name. The group label is an integer between 0 and M - 1. After the last test case, there is a single line `0 0' that terminates the input.
Output
For each test case, output a line containing a single integer, the size of the largest contact group.
Sample Input
3 2
John 0 1
Rose 1
Mary 1
5 4
ACM 1 2 3
ICPC 0 1
Asian 0 2 3
Regional 1 2
ShangHai 0 2
0 0
Sample Output
2
2
设二分值为X,判断是否在小于X的值以内,是否有可行解。以此进行二分。
建图,要限流,就是每个点都单独建一条边X到汇点,看是否满流。
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
#include<queue>
#define INF 1e9
using namespace std;
const int maxn=1500+5;
struct Edge
{
int from,to,cap,flow;
Edge(){}
Edge(int f,int t,int c,int fl):from(f),to(t),cap(c),flow(fl){}
};
struct Dinic
{
int n,m,s,t;
vector<Edge> edges;
vector<int> G[maxn];
int d[maxn];
int cur[maxn];
bool vis[maxn];
void init(int n,int s,int t)
{
this->n=n, this->s=s, this->t=t;
edges.clear();
for(int i=0;i<n;i++) G[i].clear();
}
void AddEdge(int from,int to,int cap)
{
edges.push_back( Edge(from,to,cap,0) );
edges.push_back( Edge(to,from,0,0) );
m = edges.size();
G[from].push_back(m-2);
G[to].push_back(m-1);
}
bool BFS()
{
queue<int> Q;
memset(vis,0,sizeof(vis));
vis[s]=true;
d[s]=0;
Q.push(s);
while(!Q.empty())
{
int x=Q.front(); Q.pop();
for(int i=0;i<G[x].size();++i)
{
Edge& e=edges[G[x][i]];
if(!vis[e.to] && e.cap>e.flow)
{
vis[e.to]=true;
d[e.to]=d[x]+1;
Q.push(e.to);
}
}
}
return vis[t];
}
int DFS(int x,int a)
{
if(x==t || a==0) return a;
int flow=0,f;
for(int& i=cur[x];i<G[x].size();++i)
{
Edge& e=edges[G[x][i]];
if(d[e.to]==d[x]+1 && (f=DFS(e.to,min(a,e.cap-e.flow) ) )>0)
{
e.flow +=f;
edges[G[x][i]^1].flow -=f;
flow +=f;
a -=f;
if(a==0) break;
}
}
return flow;
}
int max_flow()
{
int ans=0;
while(BFS())
{
memset(cur,0,sizeof(cur));
ans +=DFS(s,INF);
}
return ans;
}
}DC;
int n,m;
vector<int> g[maxn];//g[i]中保存第i个人可被分到的组编号
bool solve(int limit)
{
int src=0, dst=n+m+1;
DC.init(2+n+m,src,dst);
for(int i=1;i<=n;i++) DC.AddEdge(src,i,1);
for(int i=1;i<=m;i++) DC.AddEdge(n+i,dst,limit);
for(int i=1;i<=n;i++)
for(int j=0;j<g[i].size();++j)
DC.AddEdge(i,g[i][j],1);
return DC.max_flow() == n;
}
int main()
{
while(scanf("%d%d",&n,&m)==2)
{
if(n==0 && m==0) break;
for(int i=1;i<=n;i++) g[i].clear();
for(int i=1;i<=n;i++)
{
char str[100];
scanf("%s",str);
while(1)
{
int x;
scanf("%d",&x);
g[i].push_back(x+1+n);//注意这里压入的已经是处理后的编号了
char ch=getchar();
if(ch=='\n') break;
}
}
int L=0,R=n;
while(R>L)
{
int mid=L+(R-L)/2;
if(solve(mid)) R=mid;
else L=mid+1;
}
printf("%d\n",R);
}
return 0;
}
图论--网络流--最大流 POJ 2289 Jamie's Contact Groups (二分+限流建图)的更多相关文章
- POJ 2289 Jamie's Contact Groups (二分+最大流)
题目大意: 有n个人,可以分成m个组,现在给出你每个人可以去的组的编号,求分成的m组中人数最多的组最少可以有多少人. 算法讨论: 首先喷一下这题的输入,太恶心了. 然后说算法:最多的最少,二分的字眼. ...
- Poj 2289 Jamie's Contact Groups (二分+二分图多重匹配)
题目链接: Poj 2289 Jamie's Contact Groups 题目描述: 给出n个人的名单和每个人可以被分到的组,问将n个人分到m个组内,并且人数最多的组人数要尽量少,问人数最多的组有多 ...
- POJ 2289 Jamie's Contact Groups / UVA 1345 Jamie's Contact Groups / ZOJ 2399 Jamie's Contact Groups / HDU 1699 Jamie's Contact Groups / SCU 1996 Jamie's Contact Groups (二分,二分图匹配)
POJ 2289 Jamie's Contact Groups / UVA 1345 Jamie's Contact Groups / ZOJ 2399 Jamie's Contact Groups ...
- poj 2289 Jamie's Contact Groups【二分+最大流】【二分图多重匹配问题】
题目链接:http://poj.org/problem?id=2289 Jamie's Contact Groups Time Limit: 7000MS Memory Limit: 65536K ...
- POJ 2289——Jamie's Contact Groups——————【多重匹配、二分枚举匹配次数】
Jamie's Contact Groups Time Limit:7000MS Memory Limit:65536KB 64bit IO Format:%I64d & %I ...
- POJ 2289 Jamie's Contact Groups 二分图多重匹配 难度:1
Jamie's Contact Groups Time Limit: 7000MS Memory Limit: 65536K Total Submissions: 6511 Accepted: ...
- POJ 2289 Jamie's Contact Groups & POJ3189 Steady Cow Assignment
这两道题目都是多重二分匹配+枚举的做法,或者可以用网络流,实际上二分匹配也就实质是网络流,通过枚举区间,然后建立相应的图,判断该区间是否符合要求,并进一步缩小范围,直到求出解.不同之处在对是否满足条件 ...
- POJ 2289 Jamie's Contact Groups(多重匹配+二分)
题意: Jamie有很多联系人,但是很不方便管理,他想把这些联系人分成组,已知这些联系人可以被分到哪个组中去,而且要求每个组的联系人上限最小,即有一整数k,使每个组的联系人数都不大于k,问这个k最小是 ...
- POJ 2289 Jamie's Contact Groups
二分答案+网络最大流 #include<cstdio> #include<cstring> #include<cmath> #include<vector&g ...
随机推荐
- rest_framework-序列化-1
序列化 定义模型类 from django.db import models # Create your models here. class StuModel(models.Model): SEX_ ...
- Javascript 入门 document
JS可以在hmtl中直接插入文本. <!DOCTYPE html> <html> <head> <meta charset="utf-8" ...
- MySQL学习之路6-数据表连接方式
内连接 关键字: inner join on 语句:select * from <a_table> inner join <b_table> on a.id = b.id ; ...
- JAVA debug 断点调试
更多调试参看 https://www.cnblogs.com/yjd_hycf_space/p/7483471.html 先编译好要调试的程序.1.设置断点 选定要设置断点的代码行,在行号的区域后面单 ...
- MySQL的单表查询
单表查询 单表查询语法: select distinct 字段1,字段2... from 表名 where 条件 group by field having筛选 order by 关键字执行的优先级: ...
- 深度学习之文本分类模型-前馈神经网络(Feed-Forward Neural Networks)
目录 DAN(Deep Average Network) Fasttext fasttext文本分类 fasttext的n-gram模型 Doc2vec DAN(Deep Average Networ ...
- SpringBoot全局异常处理与定制404页面
一.错误处理原理分析 使用SpringBoot创建的web项目中,当我们请求的页面不存在(http状态码为404),或者器发生异常(http状态码一般为500)时,SpringBoot就会给我们返回错 ...
- 【半译】在ASP.NET Core中创建内部使用作用域服务的Quartz.NET宿主服务
在我的上一篇文章中,我展示了如何使用ASP.NET Core创建Quartz.NET托管服务并使用它来按计划运行后台任务.不幸的是,由于Quartz.NET API的工作方式,在Quartz作业中使用 ...
- [腾讯云]简单在腾讯云 CenTOS7.0 安装Nginx,Mysql(MariaDB),Memcache,解析PHP!
1.安装LNMP之前要安装EPEL,以便安装源以外的软件,如Nginx,phpMyAdmin等. yum install epel-release 2.安装Nginx a) yum install n ...
- curl book
curl是利用URL语法在命令行方式下工作的开源文件传输工具.它被广泛应用在Unix.多种Linux发行版中,并且有DOS和Win32.Win64下的移植版本. 官方地址 man page 下载页面, ...