P1056 组合数的和
P1056 组合数的和
转跳点:
1056 组合数的和 (15分)
给定 N 个非 0 的个位数字,用其中任意 2 个数字都可以组合成 1 个 2 位的数字。要求所有可能组合出来的 2 位数字的和。例如给定 2、5、8,则可以组合出:25、28、52、58、82、85,它们的和为330。
输入格式:
输入在一行中先给出 N(1 < N < 10),随后给出 N 个不同的非 0 个位数字。数字间以空格分隔。
输出格式:
输出所有可能组合出来的2位数字的和。
输入样例:
3 2 8 5
输出样例:
330
这道题比我想象的要有善的多,我以为,我又要像昨天那样被折腾的死去活来,然后莫名其妙的A了,就是两层for循环算就行了
my思路:
int sum = 0;
// 2 和 8
sum = sum + 2 * 10 + 8; //28
sum = sum + 8 * 10 + 2; //82
// 2 和 5
sum = sum + 2 * 10 + 5; //25
sum = sum + 5 * 10 + 2; //52
// 8 和 5
sum = sum + 8 * 10 + 5; //85
sum = sum + 5 * 10 + 8; //58
这样子可以加快一下循环
AC代码:
#include <stdio.h>
#include <stdlib.h> int main(void)
{
int n, sum = 0;
scanf("%d", &n);
int arr[n]; for (int i = 0; i < n; i++)
{
scanf("%d", &arr[i]);
} for (int i = 0; i < n; i++)
{
for (int j = i + 1; j < n; j++)
{
sum += (arr[i] * 10 + arr[j]);
sum += (arr[j] * 10 + arr[i]);
}
} printf("%d\n", sum); return 0;
}
PTA不易,诸君共勉!
P1056 组合数的和的更多相关文章
- LCM性质 + 组合数 - HDU 5407 CRB and Candies
CRB and Candies Problem's Link Mean: 给定一个数n,求LCM(C(n,0),C(n,1),C(n,2)...C(n,n))的值,(n<=1e6). analy ...
- 计算一维组合数的java实现
背景很简单,就是从给定的m个不同的元素中选出n个,输出所有的组合情况! 例如:从1到m的自然数中,选择n(n<=m)个数,有多少种选择的组合,将其输出! 本方案的代码实现逻辑是比较成熟的方案: ...
- Noip2016提高组 组合数问题problem
Day2 T1 题目大意 告诉你组合数公式,其中n!=1*2*3*4*5*...*n:意思是从n个物体取出m个物体的方案数 现给定n.m.k,问在所有i(1<=i<=n),所有j(1< ...
- C++单元测试 之 gtest -- 组合数计算.
本文将介绍如何使用gtest进行单元测试. gtest是google单元测试框架.使用非常方便. 首先,下载gtest (有些google项目包含gtest,如 protobuf),复制目录即可使用. ...
- NOIP2011多项式系数[快速幂|组合数|逆元]
题目描述 给定一个多项式(by+ax)^k,请求出多项式展开后x^n*y^m 项的系数. 输入输出格式 输入格式: 输入文件名为factor.in. 共一行,包含5 个整数,分别为 a ,b ,k , ...
- AC日记——组合数问题 落谷 P2822 noip2016day2T1
题目描述 组合数表示的是从n个物品中选出m个物品的方案数.举个例子,从(1,2,3) 三个物品中选择两个物品可以有(1,2),(1,3),(2,3)这三种选择方法.根据组合数的定 义,我们可以给出计算 ...
- 【板子】gcd、exgcd、乘法逆元、快速幂、快速乘、筛素数、快速求逆元、组合数
1.gcd int gcd(int a,int b){ return b?gcd(b,a%b):a; } 2.扩展gcd )extend great common divisor ll exgcd(l ...
- 【BZOJ-4591】超能粒子炮·改 数论 + 组合数 + Lucas定理
4591: [Shoi2015]超能粒子炮·改 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 95 Solved: 33[Submit][Statu ...
- UOJ263 【NOIP2016】组合数问题
本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000作者博客:http://www.cnblogs.com/ljh2000-jump/转 ...
随机推荐
- 143、Java内部类之访问方法中定义的参数或变量
01.代码如下: package TIANPAN; class Outer { // 外部类 private String msg = "Hello World !"; publi ...
- 139、Java内部类之使用this访问外部类属性
01.代码如下: package TIANPAN; class Outer { // 外部类 private String msg = "Hello World !"; class ...
- 【读书圈】win7 定时发送OA邮件
因为win7任务计划本身xls邮件调用有问题,会显示只读权限 我用vbs脚本替代了它的邮件功能!(我现在对vbs的CDO概念也没大弄清,还不知道需不需要外网,等我找台别的内网机器试试) (另外我试验了 ...
- 搜索栏UISearchBar的使用
本文结构: 1.首先是对UISearchBar的简介文字 2.初始化展现UISearchBar,并解析它的结构 3.属性.方法.代理等的一一介绍 4.日常的使用,包括单独对UISearchBar的配置 ...
- APNs推送的系统做法
1. #pragma mark - 远程推送注册获得device Token if (IOS_VERSION >= 10.0) { UNUserNotificationCenter * cent ...
- PyCharm破解安装方法
1.在3322下载站下好压缩包之后,直接点击安装文件“pycharm-professional-2018.1.exe”进行安装,默认点击“next”下一步进行操作2.选择文件所创建的位置.位置可以选择 ...
- 小陈WEB漏洞扫描器 V2.0
小陈WEB漏洞扫描器 V2.0 小陈WEB漏洞扫描器 V2.0 https://pan.baidu.com/s/1NSmFCyxowEa3YlOuhvtwwQ
- [排错] VO对象和POJO对象的关系
这或许是一个很蠢的笔记吧...... 这次项目中, 作为一个新人, 没少被这两个概念虐得死去活来的, 现在特别做一次记录, 关于它们二者之间在项目中的应用. 在这里呢, 就不再赘述 VO(view o ...
- 「NOIP2014」飞扬的小鸟
传送门 Luogu 解题思路 考虑 \(\text{DP}\) 设 \(dp[i][j]\) 表示飞到 \((i, j)\) 这个点的最小触屏次数. 转移其实比较显然,但问题是每次上升时都可以点很多次 ...
- 098、Java中String类之charAt()方法
01.代码如下: package TIANPAN; /** * 此处为文档注释 * * @author 田攀 微信382477247 */ public class TestDemo { public ...