2020-01-30 22:22:58

问题描述

问题求解

解法一:floyd

这个题目一看就是floyd解最合适,因为是要求多源最短路,floyd算法是最合适的,时间复杂度为O(n ^ 3)。

    int inf = (int)1e9;

    public int findTheCity(int n, int[][] edges, int distanceThreshold) {
int[][] dp = new int[n][n];
for (int i = 0; i < n; i++) Arrays.fill(dp[i], inf);
for (int i = 0; i < n; i++) {
dp[i][i] = 0;
}
for (int[] edge : edges) {
int u = edge[0];
int v = edge[1];
int d = edge[2];
dp[u][v] = d;
dp[v][u] = d;
}
for (int k = 0; k < n; k++) {
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
if (dp[i][j] > dp[i][k] + dp[k][j]) {
dp[i][j] = dp[i][k] + dp[k][j];
}
}
}
}
List<int[]> note = new ArrayList<>();
for (int i = 0; i < n; i++) {
int cnt = 0;
for (int j = 0; j < n; j++) {
if (dp[i][j] <= distanceThreshold) cnt += 1;
}
note.add(new int[]{i, cnt});
}
Collections.sort(note, new Comparator<int[]>(){
public int compare(int[] o1, int[] o2) {
return o1[1] == o2[1] ? o2[0] - o1[0] : o1[1] - o2[1];
}
});
return note.get(0)[0];
}

解法二:dijkstra

使用邻接表 + 优先队列可以将单源最短路的时间复杂度降到O(ElogV),所以整体的时间复杂度为O(VElogV)。

    public int findTheCity(int n, int[][] edges, int distanceThreshold) {
List<int[]> record = new ArrayList<>();
List<int[]>[] graph = new List[n];
for (int i = 0; i < n; i++) graph[i] = new ArrayList<>();
for (int[] edge : edges) {
int from = edge[0];
int to = edge[1];
int w = edge[2];
graph[from].add(new int[]{to, w});
graph[to].add(new int[]{from, w});
}
for (int i = 0; i < n; i++) {
int[] dist = new int[n];
Arrays.fill(dist, (int)1e9);
helper(graph, i, dist);
int cnt = 0;
for (int j = 0; j < n; j++) if (dist[j] <= distanceThreshold) cnt += 1;
record.add(new int[]{i, cnt});
}
Collections.sort(record, (int[] o1, int[] o2) -> o1[1] == o2[1] ? o2[0] - o1[0] : o1[1] - o2[1]);
return record.get(0)[0];
} private void helper(List<int[]>[] graph, int node, int[] dist) {
int n = graph.length;
PriorityQueue<int[]> pq = new PriorityQueue<>((int[] o1, int[] o2) -> o1[1] - o2[1]);
int[] used = new int[n];
pq.add(new int[]{node, 0});
while (!pq.isEmpty()) {
int[] curr = pq.poll();
int from = curr[0];
int d = curr[1];
if (used[from] == 1) continue;
used[from] = 1;
dist[from] = d;
for (int[] next : graph[from]) {
int to = next[0];
int w = next[1];
if (dist[to] > dist[from] + w) {
dist[to] = dist[from] + w;
pq.add(new int[]{to, dist[to]});
}
}
}
}

  

  

图论-最短路径 floyd/dijkstra-Find the City With the Smallest Number of Neighbors at a Threshold Distance的更多相关文章

  1. 图论-最短路径 2.Dijkstra算法O (N2)

    2.Dijkstra算法O (N2) 用来计算从一个点到其他所有点的最短路径的算法,是一种单源最短路径算法.也就是说,只能计算起点只有一个的情况. Dijkstra的时间复杂度是O (N2),它不能处 ...

  2. 图论最短路径算法——Dijkstra

    说实在的,这算法很简单,很简单,很简单--因为它是贪心的,而且码量也小,常数比起SPFA也小. 主要思想 先初始化,dis[起点]=0,其它皆为无限大. 还要有一个bz数组,bz[i]表示i是否确定为 ...

  3. 单源最短路径Dijkstra算法,多源最短路径Floyd算法

    1.单源最短路径 (1)无权图的单源最短路径 /*无权单源最短路径*/ void UnWeighted(LGraph Graph, Vertex S) { std::queue<Vertex&g ...

  4. 经典树与图论(最小生成树、哈夫曼树、最短路径问题---Dijkstra算法)

    参考网址: https://www.jianshu.com/p/cb5af6b5096d 算法导论--最小生成树 最小生成树:在连通网的所有生成树中,所有边的代价和最小的生成树,称为最小生成树. im ...

  5. 最短路径算法——Dijkstra,Bellman-Ford,Floyd-Warshall,Johnson

    根据DSqiu的blog整理出来 :http://dsqiu.iteye.com/blog/1689163 PS:模板是自己写的,如有错误欢迎指出~ 本文内容框架: §1 Dijkstra算法 §2 ...

  6. 最短路径算法-Dijkstra算法的应用之单词转换(词梯问题)(转)

    一,问题描述 在英文单词表中,有一些单词非常相似,它们可以通过只变换一个字符而得到另一个单词.比如:hive-->five:wine-->line:line-->nine:nine- ...

  7. 最短路径之Dijkstra算法和Floyd-Warshall算法

    最短路径算法 最短路径算法通常用在寻找图中任意两个结点之间的最短路径或者是求全局最短路径,像是包括Dijkstra.A*.Bellman-Ford.SPFA(Bellman-Ford的改进版本).Fl ...

  8. 最短路径问题---Dijkstra算法详解

    侵删https://blog.csdn.net/qq_35644234/article/details/60870719 前言 Nobody can go back and start a new b ...

  9. 最短路径问题-Dijkstra

    概述 与前面说的Floyd算法相比,Dijkstra算法只能求得图中特定顶点到其余所有顶点的最短路径长度,即单源最短路径问题. 算法思路 1.初始化,集合K中加入顶点v,顶点v到其自身的最短距离为0, ...

随机推荐

  1. RocketMQ borker配置文件

    master节点:serverSelectorThreads = 3 brokerRole = SYNC_MASTER serverSocketRcvBufSize = 131072 osPageCa ...

  2. hiho一下:Beautiful String

    hiho一下:Beautiful String 记不清这是 hiho一下第几周的题目了,题目不难,不过对于练习编程,训练思维很有帮助.况且当时笔者处于学习算法的早期, 所以也希望刚接触算法的同学能多去 ...

  3. 简单的员工管理系统(Mysql+jdbc+Servlet+JSP)

    员工管理系统 因为学业要求,需要完成一个过关检测,但是因为检测之前没有做好准备,且想到之前用mysql+jdbc+Struts2+bootstrap做成了一个ATM系统(主要有对数据的增删改查操作), ...

  4. PyCharm+git+码云实现project版本控制

    1.安装git https://git-scm.com/downloads 2.PyCharm中配置 3.申请码云 4.PyCharm中安装码云插件 右键选择,重启Pycharm. 重新打开PyCha ...

  5. TOMCAT封装DBCP

    ## 数据源 ## #Tomcat封装的DBCP: >> 基本知识: tomcat在默认情况下已经集成了DBCP: >> JNDI: |-- 基本概念: 在tomcat启动的时 ...

  6. Roma - Facebook工具链大一统

    什么是roma roma,中文名罗马,是Facebook的rn团队的产出,是一个试验性质的javascript工具链,集编译,linter,格式化,打包,测试等等于一体.目标是成为一个处理javasc ...

  7. 使用IDEA创建Maven整合SSM

    创建数据库 CREATE DATABASE `ssmbuild`; USE `ssmbuild`; DROP TABLE IF EXISTS `books`; CREATE TABLE `books` ...

  8. centos 7上openJdk 安装

    为什么不安装Oracle版本 oracle jdk 现在下载太恶心了会被登陆拦截.于是就安装openjdk. 步骤 下载 yum -y install java-1.8.0-openjdk java- ...

  9. 002-DOM事件实例-实现一个可以拖拽的登陆窗口

    前言:这是跟着慕课网一个老师的视频做的,这几天在重新的梳理自己,写完这个例子要系统的学一下jQuery,我司现在用的还是比较多,毕竟用了它不用考虑IE兼容性,可以让开发更有效率. 1.项目需求及基本的 ...

  10. HTTP入门(一):在Bash中curl查看请求与响应

    HTTP入门(一):在Bash中curl查看请求与响应 本文简单总结HTTP的请求与响应. 本文主要目的是对学习内容进行总结以及方便日后查阅. 详细教程和原理可以参考HTTP文档(MDN). 本文版权 ...