2020-01-30 22:22:58

问题描述

问题求解

解法一:floyd

这个题目一看就是floyd解最合适,因为是要求多源最短路,floyd算法是最合适的,时间复杂度为O(n ^ 3)。

    int inf = (int)1e9;

    public int findTheCity(int n, int[][] edges, int distanceThreshold) {
int[][] dp = new int[n][n];
for (int i = 0; i < n; i++) Arrays.fill(dp[i], inf);
for (int i = 0; i < n; i++) {
dp[i][i] = 0;
}
for (int[] edge : edges) {
int u = edge[0];
int v = edge[1];
int d = edge[2];
dp[u][v] = d;
dp[v][u] = d;
}
for (int k = 0; k < n; k++) {
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
if (dp[i][j] > dp[i][k] + dp[k][j]) {
dp[i][j] = dp[i][k] + dp[k][j];
}
}
}
}
List<int[]> note = new ArrayList<>();
for (int i = 0; i < n; i++) {
int cnt = 0;
for (int j = 0; j < n; j++) {
if (dp[i][j] <= distanceThreshold) cnt += 1;
}
note.add(new int[]{i, cnt});
}
Collections.sort(note, new Comparator<int[]>(){
public int compare(int[] o1, int[] o2) {
return o1[1] == o2[1] ? o2[0] - o1[0] : o1[1] - o2[1];
}
});
return note.get(0)[0];
}

解法二:dijkstra

使用邻接表 + 优先队列可以将单源最短路的时间复杂度降到O(ElogV),所以整体的时间复杂度为O(VElogV)。

    public int findTheCity(int n, int[][] edges, int distanceThreshold) {
List<int[]> record = new ArrayList<>();
List<int[]>[] graph = new List[n];
for (int i = 0; i < n; i++) graph[i] = new ArrayList<>();
for (int[] edge : edges) {
int from = edge[0];
int to = edge[1];
int w = edge[2];
graph[from].add(new int[]{to, w});
graph[to].add(new int[]{from, w});
}
for (int i = 0; i < n; i++) {
int[] dist = new int[n];
Arrays.fill(dist, (int)1e9);
helper(graph, i, dist);
int cnt = 0;
for (int j = 0; j < n; j++) if (dist[j] <= distanceThreshold) cnt += 1;
record.add(new int[]{i, cnt});
}
Collections.sort(record, (int[] o1, int[] o2) -> o1[1] == o2[1] ? o2[0] - o1[0] : o1[1] - o2[1]);
return record.get(0)[0];
} private void helper(List<int[]>[] graph, int node, int[] dist) {
int n = graph.length;
PriorityQueue<int[]> pq = new PriorityQueue<>((int[] o1, int[] o2) -> o1[1] - o2[1]);
int[] used = new int[n];
pq.add(new int[]{node, 0});
while (!pq.isEmpty()) {
int[] curr = pq.poll();
int from = curr[0];
int d = curr[1];
if (used[from] == 1) continue;
used[from] = 1;
dist[from] = d;
for (int[] next : graph[from]) {
int to = next[0];
int w = next[1];
if (dist[to] > dist[from] + w) {
dist[to] = dist[from] + w;
pq.add(new int[]{to, dist[to]});
}
}
}
}

  

  

图论-最短路径 floyd/dijkstra-Find the City With the Smallest Number of Neighbors at a Threshold Distance的更多相关文章

  1. 图论-最短路径 2.Dijkstra算法O (N2)

    2.Dijkstra算法O (N2) 用来计算从一个点到其他所有点的最短路径的算法,是一种单源最短路径算法.也就是说,只能计算起点只有一个的情况. Dijkstra的时间复杂度是O (N2),它不能处 ...

  2. 图论最短路径算法——Dijkstra

    说实在的,这算法很简单,很简单,很简单--因为它是贪心的,而且码量也小,常数比起SPFA也小. 主要思想 先初始化,dis[起点]=0,其它皆为无限大. 还要有一个bz数组,bz[i]表示i是否确定为 ...

  3. 单源最短路径Dijkstra算法,多源最短路径Floyd算法

    1.单源最短路径 (1)无权图的单源最短路径 /*无权单源最短路径*/ void UnWeighted(LGraph Graph, Vertex S) { std::queue<Vertex&g ...

  4. 经典树与图论(最小生成树、哈夫曼树、最短路径问题---Dijkstra算法)

    参考网址: https://www.jianshu.com/p/cb5af6b5096d 算法导论--最小生成树 最小生成树:在连通网的所有生成树中,所有边的代价和最小的生成树,称为最小生成树. im ...

  5. 最短路径算法——Dijkstra,Bellman-Ford,Floyd-Warshall,Johnson

    根据DSqiu的blog整理出来 :http://dsqiu.iteye.com/blog/1689163 PS:模板是自己写的,如有错误欢迎指出~ 本文内容框架: §1 Dijkstra算法 §2 ...

  6. 最短路径算法-Dijkstra算法的应用之单词转换(词梯问题)(转)

    一,问题描述 在英文单词表中,有一些单词非常相似,它们可以通过只变换一个字符而得到另一个单词.比如:hive-->five:wine-->line:line-->nine:nine- ...

  7. 最短路径之Dijkstra算法和Floyd-Warshall算法

    最短路径算法 最短路径算法通常用在寻找图中任意两个结点之间的最短路径或者是求全局最短路径,像是包括Dijkstra.A*.Bellman-Ford.SPFA(Bellman-Ford的改进版本).Fl ...

  8. 最短路径问题---Dijkstra算法详解

    侵删https://blog.csdn.net/qq_35644234/article/details/60870719 前言 Nobody can go back and start a new b ...

  9. 最短路径问题-Dijkstra

    概述 与前面说的Floyd算法相比,Dijkstra算法只能求得图中特定顶点到其余所有顶点的最短路径长度,即单源最短路径问题. 算法思路 1.初始化,集合K中加入顶点v,顶点v到其自身的最短距离为0, ...

随机推荐

  1. SpringBoot 处理 POST Json 传参枚举

    在 Spring 框架中对枚举类型的序列化/反序列化是有限制的. 假设如下面这样在某些情况下就不能正常工作: 123456789 public enum PayChannelEnum implemen ...

  2. Jquery 实现原理深入学习(3)

    前言 1.总体结构 √ 2.构建函数 √ 3.each功能函数实现 √ 4.map功能函数实现 √ 5.sizzle初步学习 6.attr功能函数实现 7.toggleClass功能函数实现(好伤) ...

  3. Nginx设置目录浏览并配置验证

    Nginx默认是不允许进行列目录的,如果需要使某个目录可以进行浏览,可如下设置:如: 让/var/www/soft 这个目录在浏览器中完成列出. 一.设置目录浏览1.打开/usr/local/ngin ...

  4. HTML笔记03------cookie

    新浪布局 初始布局代码: div.header+(div.container>(div.left+div.right))+div.footer ---------- .header{height ...

  5. 谈谈Vue的递归组件

    2月最后一天,而且还四年一遇,然而本月居然一篇博客没写,有点说不过去.所以,今天就来谈谈Vue的递归组件.我们先来看一个例子: See the Pen 递归组件 by imgss (@imgss) o ...

  6. Flutter Widgets 之 ListWheelScrollView

    注意:无特殊说明,Flutter版本及Dart版本如下: Flutter版本: 1.12.13+hotfix.5 Dart版本: 2.7.0 基础用法 在展示大量数据的时候我们第一会想到使用ListV ...

  7. 初学Qt——tableview操作

    先做简短记录改天有空再详细讲一些吧 使用QSqlQueryModel绑定了TableView,因为需要用到数据表中Id这一项,但又不想显示出来,找到方法是 在绑定之后对tableView 调用setC ...

  8. 解决vue2.0下IE浏览器白屏问题

    公司新开发的项目需要兼容到IE9+ 就在index.html页面加入 <meta http-equiv="X-UA-Compatible" content="IE= ...

  9. 关于在elasticSearch中使用聚合查询后只显示10个bucket的问题

    先看下面es查询语句 { "size": 0, "aggs" : { "all_articleId" : { "terms&quo ...

  10. 2.5D地图系统技术方案

    1.    2.5D地图概述 1.1.    概述 2.5维地图就是根据dem.dom.dlg等数据,以及真三维模型在一定高度.视角和灯光效果,按照轴侧投影的方式生成的地图.本文以臻图信息ZTMapE ...