[简单路径] Useful Decomposition
Ramesses knows a lot about problems involving trees (undirected connected graphs without cycles)!
He created a new useful tree decomposition, but he does not know how to construct it, so he asked you for help!
The decomposition is the splitting the edges of the tree in some simple paths in such a way that each two paths have at least one common vertex. Each edge of the tree should be in exactly one path.
Help Remesses, find such a decomposition of the tree or derermine that there is no such decomposition.
The first line contains a single integer n
(2≤n≤105
) the number of nodes in the tree.
Each of the next n − 1
lines contains two integers ai and bi (1≤ai,bi≤n, ai≠bi
) — the edges of the tree. It is guaranteed that the given edges form a tree.
Output
If there are no decompositions, print the only line containing "No".
Otherwise in the first line print "Yes", and in the second line print the number of paths in the decomposition m
.
Each of the next m
lines should contain two integers ui, vi (1≤ui,vi≤n, ui≠vi) denoting that one of the paths in the decomposition is the simple path between nodes ui and vi
.
Each pair of paths in the decomposition should have at least one
common vertex, and each edge of the tree should be presented in exactly
one path. You can print the paths and the ends of each path in arbitrary
order.
If there are multiple decompositions, print any.
Examples
4
1 2
2 3
3 4
Yes
1
1 4
6
1 2
2 3
3 4
2 5
3 6
No
5
1 2
1 3
1 4
1 5
Yes
4
1 2
1 3
1 4
1 5
Note
The tree from the first example is shown on the picture below: The number next to each edge corresponds to the path number in the decomposition. It is easy to see that this decomposition suits the required conditions.
The tree from the second example is shown on the picture below: We can show that there are no valid decompositions of this tree.
The tree from the third example is shown on the picture below: The number next to each edge corresponds to the path number in the decomposition. It is easy to see that this decomposition suits the required conditions.
思路:简单路径就是在一个路径中同一个边只能出现一次.如果存在一些过一个公共结点的简单路径则最多只能有一个结点的度数大于2
我们选一个度数最大的结点作为根结点,根结点到叶子结点的简单路径就是合法的简单路径,dfs求一下就完事了,然后就test5超时了.
其实我们要输出根结点和叶子结点,而叶子结点是度数为1的结点,所以我们统计所有度数为1的结点,把它和根节点一起输出就好了
#include<cstdio>
#include<cstring>
#include<iostream>
#include<queue>
#include<algorithm>
using namespace std;
typedef long long ll;
const int amn=1e5+;
int n,ans,idx[amn],root;
vector<int> eg[amn];
struct node{
int i,val;
}cnt[amn];
bool cmp(node a,node b){
if(a.val==b.val)return a.i<b.i;
return a.val>b.val;
}
int main(){
scanf("%d",&n);
int x,y;
for(int i=;i<=n-;i++){
scanf("%d%d",&x,&y);
eg[x].push_back(y);
eg[y].push_back(x);
}
for(int i=;i<=n;i++){
cnt[i].val=eg[i].size();
cnt[i].i=i;
}
sort(cnt+,cnt++n,cmp);
if(cnt[].val>&&cnt[].val>){
printf("No\n");
}
else{
if(cnt[].val>)root=cnt[].i;
else{
for(int i=;i<=n;i++){
if(cnt[i].val<){
root=cnt[i].i;
break;
}
}
}
memset(idx,,sizeof idx);
printf("Yes\n%d\n",eg[root].size());
int st;
for(int i=n;i>=;i--){
if(cnt[i].val>)break;
st=i;
}
for(int i=st;i<=n;i++){
if(cnt[i].i==root)continue;
printf("%d ",root);
printf("%d\n",cnt[i].i);
}
}
}
/**
题意:给出n个结点成一颗树,问是否存在一些过一个公共结点的简单路径,如果存在则输出Yes并输出这些路径,否则输出No
思路:简单路径就是在一个路径中同一个边只能出现一次.如果存在一些过一个公共结点的简单路径则最多只能有一个结点的度数大于2
我们选一个度数最大的结点作为根结点,根结点到叶子结点的简单路径就是合法的简单路径,dfs求一下就完事了,然后就test5超时了.
其实我们要输出根结点和叶子结点,而叶子结点是度数为1的结点,所以我们统计所有度数为1的结点,把它和根节点一起输出就好了
**/
[简单路径] Useful Decomposition的更多相关文章
- 【Leetcode】二叉树简单路径最大和问题
问题一:二叉树任意两个叶子间简单路径最大和 示例: -100 / \ 2 100 / \ 10 20 思路:这个问题适用于递归思路. 首先,将问题简单化:假设包含最大和summax的简单 ...
- 输出图中顶点i到顶点j之间的所有简单路径
简单路径(不包括环) DFS遍历以及回溯得到结果 void dfs(ALGraph graph, int v, int end, bool visit[], int path[], int cnt) ...
- ZOJ 3213 Beautiful Meadow 简单路径 插头DP
简单路径的题目,其实就是在状态后面多记了有多少个独立插头. 分类讨论独立插头: 1.只存在上插头或者左插头,可以选择作为独立插头. 2.都不存在上插头和左插头,选择作为独立插头的同时要标号为新的连通块 ...
- _DataStructure_C_Impl:求图G中从顶点u到顶点v的一条简单路径
#pragma once #include<stdio.h> #include<stdlib.h> #define StackSize 100 typedef int Data ...
- 基于邻接表的长度为k的简单路径的求解
描述 一个连通图采用邻接表作为存储结构.设计一个算法,判断无向图中任意给定的两点是否存在一条长度为k的简单路径. 输入 多组数据,每组m+3数据行.第一行有两个数字n,m和k,代表有n个顶点,m条边和 ...
- javascript输出图的简单路径
<script> //图的构建 function vnode() { this.visited=0; this.vertex=0; this.arcs=new Array(); } fun ...
- LeetCode 简单 - 路径总和(112)
给定一个二叉树和一个目标和,判断该树中是否存在根节点到叶子节点的路径,这条路径上所有节点值相加等于目标和. 说明: 叶子节点是指没有子节点的节点. 示例: 给定如下二叉树,以及目标和 sum = 22 ...
- struts2、jsp的简单路径的简单拦截
<filter> <filter-name>UsersFilter</filter-name> <filter-class>com.web.UsersF ...
- seller vue配置路径相对路径【组件 只写简单路径】
在[webpack.base.conf.js]配置 'components': path.resolve(__dirname, '../src/components')
随机推荐
- 安卓权威编程指南 挑战练习:实现高效RecyclerView刷新
Adapter的notifyDataSetChanged方法会通知RecyclerView刷新全部的可见列表项. 在CriminalIntent应用里,这个方法不够高效,我们知道,返回CrimeLis ...
- C++走向远洋——36(数组做数据成员,工资)
*/ * Copyright (c) 2016,烟台大学计算机与控制工程学院 * All rights reserved. * 文件名:salarly.cpp * 作者:常轩 * 微信公众号:Worl ...
- PAT-进制转换
3.5-进制转换 对于一个P进制的数,如果要转换为Q进制的数,需要分为两步: ①将P进制数x转换为十进制数y 对于一个十进制数y=d1d2···dn,可以将其写为: y = d1 * 10n-1 + ...
- [Statistics] Comparison of Three Correlation Coefficient: Pearson, Kendall, Spearman
There are three popular metrics to measure the correlation between two random variables: Pearson's c ...
- 并查集(不相交集)的Union操作
在并查集(不相交集)中附加操作\(Deunion\),它实现的功能是取消最后一次\(Union\)的操作. 实现思想 初始化一个空栈,将每一次的\(Union\)操作的两个集合的根和其值\(Push\ ...
- Java面试必问之Hashmap底层实现原理(JDK1.8)
1. 前言 上一篇从源码方面了解了JDK1.7中Hashmap的实现原理,可以看到其源码相对还是比较简单的.本篇笔者和大家一起学习下JDK1.8下Hashmap的实现.JDK1.8中对Hashmap做 ...
- [Cts-Verifier]waiver-Camera-ITS-Test
[问题描述] 工具:Cts-Verifier-9.0-R11.apk 测试Camera ITS Test时,点击该测试项后verifier apk闪退.重新打开后该项未pass变绿. [问题结论] A ...
- SQL Server 最小日志记录
SQL Server之所以记录事务日志,首要目的是为了把失败或取消的操作还原到最原始的状态,但是,并不是所有的操作都需要完全记录事务日志,比如,在一个空表上放置排他锁,把大量的数据插入到该空表中.即使 ...
- 使用Blazor Server 线路处理程序 (circuit handler)跟踪打开的SignalR连接
Blazor服务器允许定义线路处理程序(circuit handler)代码,该处理程序(handler)允许在更改用户线路状态时运行此代码. 线路处理程序(circuit handler)是通过从C ...
- spring boot 整合elasticsearch
1.导入jar包 <properties> <project.build.sourceEncoding>UTF-8</project.build.sourceEncodi ...