非常好的一个题目,CF上的DP都比较经典

题意就是 给定一个串A,B,正好执行K次操作,每次操作可以把 A串从中间切开,并调换两部分的位置,问最后得到B串共有多少种不同的切法(只要中间有一次不同,即视为不同)

首先,题目的一个关键点一定要抓到,就是 ,不管怎么切 然后调换位置,其实串根本没变,你把串想成一个环,从某一点分成两部分并且交换位置,其实就是把串的起点变到了该点,这是很关键也是最机智的一点

然后,我们要发现规律,你纸上模拟也行,推理也行。。

我们发现:1.首先原串(即以0号字母开头的)个数为1,其他种类串为0。

2.第一次变化之后,原串个数即为0,其他串个数为1(由原串变过去,但原串变不成自己)

3.第二次变化,原串个数为len-1(由其他串变过来),其他串变为len-2 (由原串 和 除自己外的其他串变过来, 0+len-2,原串为0,故为len-2)

所以我们总结出的规律,假设 dp[i][0]为原串,dp[i][1]为其他串

dp[i][0]=(len-1)*dp[i-1][1],

dp[i][0]=dp[i-1][0]+(len-2)*dp[i-1][1].

即由上一次的原串 和 其他串的个数,可推得现在的原串和其他串的个数,所以dp的第一维也只要开2就行,用滚动数组

最后枚举一下,B串跟A串 有多少种原串和其他串(其实就是枚举开始的点) 乘以对应的dp即可

真的是巨经典的一个相当于计数dp的题目

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#define LL __int64
using namespace std;
const LL M=1000000000+7;
LL dp[2][2];
char s1[1010],s2[1010];
int k;
int main()
{
while (scanf("%s%s%d",s1,s2,&k)!=EOF)
{
int len=strlen(s1);
dp[0][0]=1;
dp[0][1]=dp[1][1]=dp[1][0]=0;
int p=0;
while (k--)
{
dp[p^1][0]=(len-1)*dp[p][1];
dp[p^1][1]=dp[p][0]+dp[p][1]*(len-2);
p^=1;
if (dp[p][0]>=M) dp[p][0]%=M;
if (dp[p][1]>=M) dp[p][1]%=M;
}
LL ans=0;
for (int i=0;i<len;i++){
bool flag=1;
for(int j=0;j<len;j++){
int q=i+j;
q%=len;
if (s1[q]!=s2[j]){
flag=0;
break;
}
}
if (flag){
if (i==0) ans+=dp[p][0];
else ans+=dp[p][1];
if (ans>=M) ans%=M;
}
}
printf("%I64d\n",ans);
}
return 0;
}

  

Codeforces 176B 经典DP的更多相关文章

  1. Codeforces 176B (线性DP+字符串)

    题目链接: http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=28214 题目大意:源串有如下变形:每次将串切为两半,位置颠倒形成 ...

  2. CodeForces 176B Word Cut (计数DP)

    Word Cut Time Limit:2000MS     Memory Limit:262144KB     64bit IO Format:%I64d & %I64u Submit St ...

  3. HDU 1003 Max Sum --- 经典DP

    HDU 1003    相关链接   HDU 1231题解 题目大意:给定序列个数n及n个数,求该序列的最大连续子序列的和,要求输出最大连续子序列的和以及子序列的首位位置 解题思路:经典DP,可以定义 ...

  4. poj1458 求最长公共子序列 经典DP

    Common Subsequence Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 45763   Accepted: 18 ...

  5. NYOJ - 矩形嵌套(经典dp)

    矩形嵌套时间限制:3000 ms | 内存限制:65535 KB 描述 有n个矩形,每个矩形可以用a,b来描述,表示长和宽.矩形X(a,b)可以嵌套在矩形Y(c,d)中当且仅当a<c,b< ...

  6. 51nod 1412 AVL树的种类(经典dp)

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1412 题意: 思路: 经典dp!!!可惜我想不到!! $dp[i][k] ...

  7. NYOJ 16 矩形嵌套(经典DP)

    http://acm.nyist.net/JudgeOnline/problem.php?pid=16 矩形嵌套 时间限制:3000 ms  |           内存限制:65535 KB 难度: ...

  8. poj 1050 To the Max 最大子矩阵和 经典dp

    To the Max   Description Given a two-dimensional array of positive and negative integers, a sub-rect ...

  9. CS Academy Distinct Neighbours(经典dp)

    CS Academy Distinct Neighbours(经典dp) 题意: 求相邻无相同数字的合法的排列数 题解: 题解 先将相同的数字分为一类,假设共有n组 定义\(dp[i][j]\)表示前 ...

随机推荐

  1. UIViewContentModel图解+文解

    typedef NS_ENUM(NSInteger, UIViewContentMode) { //图片拉伸填充至整个UIImageView(图片可能会变形),这也是默认的属性,如果什么都不设置就是它 ...

  2. json序列化(重要)

    (1)同(2)public JsonResult JsonUserGet() { DataSet ds = Web_User.P_LG_User_Get(nUserId); return Json(J ...

  3. KVM——虚拟化

    KVM——虚拟化   虚拟化是指通过虚拟化技术将一台计算机虚拟为多台逻辑计算机.在一台计算机上同时运行多个逻辑计算机,每个逻辑计算机可运行不同的操作系统,并且应用程序都可以在相互独立的空间内运行而互相 ...

  4. Vue和React之间关于注册组件和组件间传值的区别

    注册组件 Vue中:1.引入组件:2.在components中注册组件:3.使用组件; React中:1.引入组件:2.使用组件; 子父传值 Vue中: 父组件向子组件传值: 1.在父组件中绑定值:2 ...

  5. 二十一 JDK注解&注解案例

    什么是注解? 注解和接口,类属于同一个级别 注解可以在变量.方法.类上加载 注解可以有属性也可以没有属性 注解是有作用范围(源码.编译期间,运行期间) 源码期间:例如String类上@Author  ...

  6. Tensorflow官方文档 input_data.py 下载

    说明: 本篇文章适用于MNIST教程下载数据集. # Copyright 2015 Google Inc. All Rights Reserved. # # Licensed under the Ap ...

  7. Windows下使用nginx问题

    1.下载完成后,解压缩,运行cmd,使用命令进行操作,不要直接双击nginx.exe,不要直接双击nginx.exe,不要直接双击nginx.exe 一定要在dos窗口启动,不要直接双击nginx.e ...

  8. 使用JMX连接JVM

    什么是JMX? 什么是JMX,Java Management Extensions,即Java管理扩展,是一个为应用程序.设备.系统等植入管理功能的框架.JMX可以跨越一系列异构操作系统平台.系统体系 ...

  9. Ubuntu下安装 Mysql

    MYSQL在ubuntu16.04下的编译安装mysql-5.6.23.tar.gz 为减少安装过程中因权限带来个各种问题,建议全程用root用户编译安装,步骤如下: 1.安装依赖文件  apt-ge ...

  10. 031、Java中偶数偶数的判断方法

    01.代码如下: package TIANPAN; /** * 此处为文档注释 * * @author 田攀 微信382477247 */ public class TestDemo { public ...