Java8集合框架——LinkedHashMap源码分析
本文的结构如下:
- 一、LinkedHashMap 的 Javadoc 文档注释和简要说明
- 二、LinkedHashMap 的内部实现:一些扩展属性和构造函数
- 三、LinkedHashMap 的 put 操作和扩容
- 四、LinkedHashMap 的 get 操作
- 五、LinkedHashMap 的 remove 操作
一、LinkedHashMap 的 Javadoc 文档注释和简要说明
先膜拜下 LinkedHashMap 的 Javadoc,只能说很佩服,这文档注释把 LinkedHashMap 的主要特点都罗列出来了。看懂这注释,然后再对照源码,可以理解个七七八八八,也不会奇怪说各路总结那么多,都是哪来的。以下是 Javadoc 的几点摘抄:
- LinkedHashMap 是 Map 接口的 hash table 和 linked list 实现类,内部所有节点维护了双链表,迭代顺序可预测,默认按照插入顺序进行迭代输出(已存在的 k 重新 put 不影响顺序,因为 m.containsKey(k) 会先返回 true ),这种特性对于需要有序的 Map 参数来说很有用,而且效率优于 TreeMap。
- LinkedHashMap 还提供了构造器用于指定按照访问顺序进行迭代输出,即按照最近最少访问到最近访问的访问顺序:from least-recently accessed to most-recently (access-order)。这种特性适合做 LRU 缓存(least-recently used cache),即继承 LinkedHashMap ,重写 removeEldestEntry(Map.Entry) 方法来指定什么时候移除的策略。
- LinkedHashMap 继承了 HashMap,基本操作(add, contains and remove)可以认为是O(1),因需要维护双链表,性能可能会略低于 HashMap,但是有一个例外:LinkedHashMap 的迭代只与实际大小有关(毕竟可以依靠双链表进行迭代),而 HashMap 的迭代则与容量有关,性能会相对低于 LinkedHashMap。
- 同样不适合多线程操作,需要额外进行同步,比如使用 Collections.synchronizedMap 。
- 迭代器也是 fail-fast,而且并不保证出现有并发修改就百分百抛出 ConcurrentModificationException,而是尽可能检查到,因此只适用于检测 bug(抛出 ConcurrentModificationException 说明有问题,但是没有抛出来不能说明没问题)。
可以看出,LinkedHashMap 有 2个 主要用途:
- 有序的 HashMap
- LRU cache
LinkedHashMap 的 Javadoc:
- /**
- * <p>Hash table and linked list implementation of the <tt>Map</tt> interface,
- * with predictable iteration order. This implementation differs from
- * <tt>HashMap</tt> in that it maintains a doubly-linked list running through
- * all of its entries. This linked list defines the iteration ordering,
- * which is normally the order in which keys were inserted into the map
- * (<i>insertion-order</i>). Note that insertion order is not affected
- * if a key is <i>re-inserted</i> into the map. (A key <tt>k</tt> is
- * reinserted into a map <tt>m</tt> if <tt>m.put(k, v)</tt> is invoked when
- * <tt>m.containsKey(k)</tt> would return <tt>true</tt> immediately prior to
- * the invocation.)
- *
- * <p>This implementation spares its clients from the unspecified, generally
- * chaotic ordering provided by {@link HashMap} (and {@link Hashtable}),
- * without incurring the increased cost associated with {@link TreeMap}. It
- * can be used to produce a copy of a map that has the same order as the
- * original, regardless of the original map's implementation:
- * <pre>
- * void foo(Map m) {
- * Map copy = new LinkedHashMap(m);
- * ...
- * }
- * </pre>
- * This technique is particularly useful if a module takes a map on input,
- * copies it, and later returns results whose order is determined by that of
- * the copy. (Clients generally appreciate having things returned in the same
- * order they were presented.)
- *
- * <p>A special {@link #LinkedHashMap(int,float,boolean) constructor} is
- * provided to create a linked hash map whose order of iteration is the order
- * in which its entries were last accessed, from least-recently accessed to
- * most-recently (<i>access-order</i>). This kind of map is well-suited to
- * building LRU caches. Invoking the {@code put}, {@code putIfAbsent},
- * {@code get}, {@code getOrDefault}, {@code compute}, {@code computeIfAbsent},
- * {@code computeIfPresent}, or {@code merge} methods results
- * in an access to the corresponding entry (assuming it exists after the
- * invocation completes). The {@code replace} methods only result in an access
- * of the entry if the value is replaced. The {@code putAll} method generates one
- * entry access for each mapping in the specified map, in the order that
- * key-value mappings are provided by the specified map's entry set iterator.
- * <i>No other methods generate entry accesses.</i> In particular, operations
- * on collection-views do <i>not</i> affect the order of iteration of the
- * backing map.
- *
- * <p>The {@link #removeEldestEntry(Map.Entry)} method may be overridden to
- * impose a policy for removing stale mappings automatically when new mappings
- * are added to the map.
- *
- * <p>This class provides all of the optional <tt>Map</tt> operations, and
- * permits null elements. Like <tt>HashMap</tt>, it provides constant-time
- * performance for the basic operations (<tt>add</tt>, <tt>contains</tt> and
- * <tt>remove</tt>), assuming the hash function disperses elements
- * properly among the buckets. Performance is likely to be just slightly
- * below that of <tt>HashMap</tt>, due to the added expense of maintaining the
- * linked list, with one exception: Iteration over the collection-views
- * of a <tt>LinkedHashMap</tt> requires time proportional to the <i>size</i>
- * of the map, regardless of its capacity. Iteration over a <tt>HashMap</tt>
- * is likely to be more expensive, requiring time proportional to its
- * <i>capacity</i>.
- *
- * <p>A linked hash map has two parameters that affect its performance:
- * <i>initial capacity</i> and <i>load factor</i>. They are defined precisely
- * as for <tt>HashMap</tt>. Note, however, that the penalty for choosing an
- * excessively high value for initial capacity is less severe for this class
- * than for <tt>HashMap</tt>, as iteration times for this class are unaffected
- * by capacity.
- *
- * <p><strong>Note that this implementation is not synchronized.</strong>
- * If multiple threads access a linked hash map concurrently, and at least
- * one of the threads modifies the map structurally, it <em>must</em> be
- * synchronized externally. This is typically accomplished by
- * synchronizing on some object that naturally encapsulates the map.
- *
- * If no such object exists, the map should be "wrapped" using the
- * {@link Collections#synchronizedMap Collections.synchronizedMap}
- * method. This is best done at creation time, to prevent accidental
- * unsynchronized access to the map:<pre>
- * Map m = Collections.synchronizedMap(new LinkedHashMap(...));</pre>
- *
- * A structural modification is any operation that adds or deletes one or more
- * mappings or, in the case of access-ordered linked hash maps, affects
- * iteration order. In insertion-ordered linked hash maps, merely changing
- * the value associated with a key that is already contained in the map is not
- * a structural modification. <strong>In access-ordered linked hash maps,
- * merely querying the map with <tt>get</tt> is a structural modification.
- * </strong>)
- *
- * <p>The iterators returned by the <tt>iterator</tt> method of the collections
- * returned by all of this class's collection view methods are
- * <em>fail-fast</em>: if the map is structurally modified at any time after
- * the iterator is created, in any way except through the iterator's own
- * <tt>remove</tt> method, the iterator will throw a {@link
- * ConcurrentModificationException}. Thus, in the face of concurrent
- * modification, the iterator fails quickly and cleanly, rather than risking
- * arbitrary, non-deterministic behavior at an undetermined time in the future.
- *
- * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
- * as it is, generally speaking, impossible to make any hard guarantees in the
- * presence of unsynchronized concurrent modification. Fail-fast iterators
- * throw <tt>ConcurrentModificationException</tt> on a best-effort basis.
- * Therefore, it would be wrong to write a program that depended on this
- * exception for its correctness: <i>the fail-fast behavior of iterators
- * should be used only to detect bugs.</i>
- *
- * <p>The spliterators returned by the spliterator method of the collections
- * returned by all of this class's collection view methods are
- * <em><a href="Spliterator.html#binding">late-binding</a></em>,
- * <em>fail-fast</em>, and additionally report {@link Spliterator#ORDERED}.
- *
- * <p>This class is a member of the
- * <a href="{@docRoot}/../technotes/guides/collections/index.html">
- * Java Collections Framework</a>.
- *
- * @implNote
- * The spliterators returned by the spliterator method of the collections
- * returned by all of this class's collection view methods are created from
- * the iterators of the corresponding collections.
- *
- * @param <K> the type of keys maintained by this map
- * @param <V> the type of mapped values
- *
- * @author Josh Bloch
- * @see Object#hashCode()
- * @see Collection
- * @see Map
- * @see HashMap
- * @see TreeMap
- * @see Hashtable
- * @since 1.4
- */
二、LinkedHashMap 的内部实现:一些扩展属性和构造函数
LinkedHashMap 继承了 HashMap,这里重点说下 LinkedHashMap 在内部属性和构造函数方面扩展的部分。
1、扩展的属性和内部类
可以初步看出内部的一些变化,比如增加了首节点和尾节点的记录,内部节点元素增加了 before 和 after 节点。这些都是维持双链表需要用到的。另外就是 accessOrder ,用于指定是否按照 访问顺序(设置为 true) 排序(默认 false 是插入顺序)。
- /**
- * HashMap.Node subclass for normal LinkedHashMap entries.
- * LinkedHashMap 的内部节点实现类,这里增加了 before 和 after 节点,用于维护 doubly-linked list
- * 这里继承了 HashMap.Node ,保证新节点的类型一致,都是 HashMap.Node
- */
- static class Entry<K,V> extends HashMap.Node<K,V> {
- Entry<K,V> before, after;
- Entry(int hash, K key, V value, Node<K,V> next) {
- super(hash, key, value, next);
- }
- }
- /**
- * The head (eldest) of the doubly linked list.
- * 首节点元素(最早插入/最近最早访问过的)
- */
- transient LinkedHashMap.Entry<K,V> head;
- /**
- * The tail (youngest) of the doubly linked list.
- * 尾节点元素(最晚插入/最近访问的)
- */
- transient LinkedHashMap.Entry<K,V> tail;
- /**
- * The iteration ordering method for this linked hash map: <tt>true</tt>
- * for access-order, <tt>false</tt> for insertion-order.
- * 迭代器的顺序控制
- * true:根据访问顺序
- * false:默认场景,根据插入顺序
- * @serial
- */
- final boolean accessOrder;
2、构造函数
和 HashMap 构造函数的差别主要是 accessOrder 的设置。
- /**
- * Constructs an empty insertion-ordered <tt>LinkedHashMap</tt> instance
- * with the specified initial capacity and load factor.
- *
- * 指定 初始容量 和 负载因子 ,同时默认为 插入顺序
- * @param initialCapacity the initial capacity
- * @param loadFactor the load factor
- * @throws IllegalArgumentException if the initial capacity is negative
- * or the load factor is nonpositive
- */
- public LinkedHashMap(int initialCapacity, float loadFactor) {
- super(initialCapacity, loadFactor);
- accessOrder = false;
- }
- /**
- * Constructs an empty insertion-ordered <tt>LinkedHashMap</tt> instance
- * with the specified initial capacity and a default load factor (0.75).
- *
- * 指定 初始容量 ,默认负载因子 0.75,同时默认为 插入顺序
- * @param initialCapacity the initial capacity
- * @throws IllegalArgumentException if the initial capacity is negative
- */
- public LinkedHashMap(int initialCapacity) {
- super(initialCapacity);
- accessOrder = false;
- }
- /**
- * Constructs an empty insertion-ordered <tt>LinkedHashMap</tt> instance
- * with the default initial capacity (16) and load factor (0.75).
- *
- * 空构造函数,默认初始容量 16,默认负载因子 0.75,同时默认为 插入顺序
- */
- public LinkedHashMap() {
- super();
- accessOrder = false;
- }
- /**
- * Constructs an insertion-ordered <tt>LinkedHashMap</tt> instance with
- * the same mappings as the specified map. The <tt>LinkedHashMap</tt>
- * instance is created with a default load factor (0.75) and an initial
- * capacity sufficient to hold the mappings in the specified map.
- *
- * 通过指定 Map 构造默认为 插入顺序 的 LinkedHashMap
- * @param m the map whose mappings are to be placed in this map
- * @throws NullPointerException if the specified map is null
- */
- public LinkedHashMap(Map<? extends K, ? extends V> m) {
- super();
- accessOrder = false;
- putMapEntries(m, false);
- }
- /**
- * Constructs an empty <tt>LinkedHashMap</tt> instance with the
- * specified initial capacity, load factor and ordering mode.
- *
- * 指定 初始容量、负载因子、排序模式
- * @param initialCapacity the initial capacity
- * @param loadFactor the load factor
- * @param accessOrder the ordering mode - <tt>true</tt> for
- * access-order, <tt>false</tt> for insertion-order
- * @throws IllegalArgumentException if the initial capacity is negative
- * or the load factor is nonpositive
- */
- public LinkedHashMap(int initialCapacity,
- float loadFactor,
- boolean accessOrder) {
- super(initialCapacity, loadFactor);
- this.accessOrder = accessOrder;
- }
三、LinkedHashMap 的 put 操作和扩容
put 操作直接继承自 HashMap,由于 LinkedHashMap 会涉及到双向链表的处理,这里有几个 注意点/改动点 需要说明下:
1、重写新节点创建函数 Node<K,V> newNode(int hash, K key, V value, Node<K,V> e),维护双链表
LinkedHashMap 的节点会有双向链表,因此在这里进行了处理,很明显,新节点即使最后访问也是最新插入的,直接就丢到最后去没毛病,因此链接到了链表最后/最新处。
- // 创建新节点 并将 新节点 链接 到最后
- Node<K,V> newNode(int hash, K key, V value, Node<K,V> e) {
- LinkedHashMap.Entry<K,V> p =
- new LinkedHashMap.Entry<K,V>(hash, key, value, e);
- linkNodeLast(p); // 将 新节点 链接 到最后
- return p;
- }
- // link at the end of list
- // 将 新节点 链接 到最后
- private void linkNodeLast(LinkedHashMap.Entry<K,V> p) {
- LinkedHashMap.Entry<K,V> last = tail;
- tail = p;
- if (last == null)
- head = p;
- else {
- p.before = last;
- last.after = p;
- }
- }
2、HashMap 中留下来的三个回调函数, LinkedHashMap 都进行了重写
put 操作中有使用到的是 afterNodeAccess(Node<K,V> p) 和 afterNodeInsertion(boolean evict)。
- afterNodeAccess(Node<K,V> p) :k 存在的时候进行的操作。如果是根据访问控制顺序,需要将访问到的节点的链接到最后去;
- afterNodeInsertion(boolean evict) :k 不存在的时候进行的操作。 LRU cache 中可以进行实际的移除节点操作
- // Callbacks to allow LinkedHashMap post-actions
- void afterNodeAccess(Node<K,V> p) { } // 访问节点后需要进行的操作,如果指定了根据访问顺序控制,则在这里将节点挪到最后
- void afterNodeInsertion(boolean evict) { } // 插入节点后需要进行的操作,比如 LRU cache 中移除最早的节点
- void afterNodeRemoval(Node<K,V> p) { } // 移除指定节点
在 LinkedHashMap 中的实现如下:
- // 移除 e 节点元素后的操作,对于 HashMap ,removeNode 函数已经是移除了节点,这里是 LinkedHashMap 处理节点中和双向链表有关的的 before 和 after
- void afterNodeRemoval(Node<K,V> e) { // unlink
- LinkedHashMap.Entry<K,V> p =
- (LinkedHashMap.Entry<K,V>)e, b = p.before, a = p.after;
- // 移除 e 节点本身的链接
- p.before = p.after = null;
- if (b == null) // 重置 e 节点上一个节点的 after 链接
- head = a;
- else
- b.after = a;
- if (a == null) // 重置 e 节点下一个节点的 before 链接
- tail = b;
- else
- a.before = b;
- }
- // 是否移除最早插入/访问的节点元素
- void afterNodeInsertion(boolean evict) { // possibly remove eldest
- LinkedHashMap.Entry<K,V> first;
- // 最简单的 LRU cache 其实就是重写 removeEldestEntry 什么时候返回 true 的逻辑(比如超过容量限制),然后移除最早插入/访问的节点
- if (evict && (first = head) != null && removeEldestEntry(first)) {
- K key = first.key;
- removeNode(hash(key), key, null, false, true);
- }
- }
- // 节点访问后是否将节点挪到最后
- void afterNodeAccess(Node<K,V> e) { // move node to last
- LinkedHashMap.Entry<K,V> last;
- if (accessOrder && (last = tail) != e) {
- LinkedHashMap.Entry<K,V> p =
- (LinkedHashMap.Entry<K,V>)e, b = p.before, a = p.after;
- p.after = null;
- if (b == null) // 重置 e 节点上一个节点的 after 链接
- head = a;
- else
- b.after = a;
- if (a != null) // 重置 e 节点下一个节点的 before 链接
- a.before = b;
- else
- last = b;
- if (last == null) // 只有一个 e 节点的场景
- head = p;
- else {
- p.before = last; // 把 e 节点挪到最后
- last.after = p;
- }
- tail = p; // 尾节点处理
- ++modCount;
- }
- }
这里再看看 removeEldestEntry(Map.Entry<K,V> eldest),这个方法是实现 LRU cache 的关键所在,文档注释中其实已经写明了简要应用,也就是检查 Map 的实际大小是否 大于 规定的容量,超过就是返回true,需要进行节点移除,保证集合不超过规定的上限。
- /**
- * Returns <tt>true</tt> if this map should remove its eldest entry.
- * This method is invoked by <tt>put</tt> and <tt>putAll</tt> after
- * inserting a new entry into the map. It provides the implementor
- * with the opportunity to remove the eldest entry each time a new one
- * is added. This is useful if the map represents a cache: it allows
- * the map to reduce memory consumption by deleting stale entries.
- *
- * <p>Sample use: this override will allow the map to grow up to 100
- * entries and then delete the eldest entry each time a new entry is
- * added, maintaining a steady state of 100 entries.
- * <pre>
- * private static final int MAX_ENTRIES = 100;
- *
- * protected boolean removeEldestEntry(Map.Entry eldest) {
- * return size() > MAX_ENTRIES;
- * }
- * </pre>
- *
- * <p>This method typically does not modify the map in any way,
- * instead allowing the map to modify itself as directed by its
- * return value. It <i>is</i> permitted for this method to modify
- * the map directly, but if it does so, it <i>must</i> return
- * <tt>false</tt> (indicating that the map should not attempt any
- * further modification). The effects of returning <tt>true</tt>
- * after modifying the map from within this method are unspecified.
- *
- * <p>This implementation merely returns <tt>false</tt> (so that this
- * map acts like a normal map - the eldest element is never removed).
- *
- * @param eldest The least recently inserted entry in the map, or if
- * this is an access-ordered map, the least recently accessed
- * entry. This is the entry that will be removed it this
- * method returns <tt>true</tt>. If the map was empty prior
- * to the <tt>put</tt> or <tt>putAll</tt> invocation resulting
- * in this invocation, this will be the entry that was just
- * inserted; in other words, if the map contains a single
- * entry, the eldest entry is also the newest.
- * @return <tt>true</tt> if the eldest entry should be removed
- * from the map; <tt>false</tt> if it should be retained.
- */
- protected boolean removeEldestEntry(Map.Entry<K,V> eldest) {
- return false;
- }
3、还有一个比较骚的操作就是 HashMap 内部 红黑树节点 TreeNode 是直接继承 LinkedHashMap.Entry,因此这方面的 红黑树转化、扩容等等基本上可以说是无缝对接。
- static final class TreeNode<K,V> extends LinkedHashMap.Entry<K,V> {...}
红黑树转化和扩容其实只是涉及到内部节点的挪动,双向链表是不用改动的,因此不需要进行操作。
四、LinkedHashMap 的 get 操作
增加了 afterNodeAccess(Node<K,V> p) 的调用,对于访问顺序控制 LinkedHashMap,需要将访问的节点挪到最后去。其他的和 HashMap 一样。
- /**
- * Returns the value to which the specified key is mapped,
- * or {@code null} if this map contains no mapping for the key.
- *
- * <p>More formally, if this map contains a mapping from a key
- * {@code k} to a value {@code v} such that {@code (key==null ? k==null :
- * key.equals(k))}, then this method returns {@code v}; otherwise
- * it returns {@code null}. (There can be at most one such mapping.)
- *
- * <p>A return value of {@code null} does not <i>necessarily</i>
- * indicate that the map contains no mapping for the key; it's also
- * possible that the map explicitly maps the key to {@code null}.
- * The {@link #containsKey containsKey} operation may be used to
- * distinguish these two cases.
- */
- public V get(Object key) {
- Node<K,V> e;
- if ((e = getNode(hash(key), key)) == null)
- return null;
- if (accessOrder)
- afterNodeAccess(e); // 增加访问节点后需要进行的操作,如果指定了根据访问顺序控制,则在这里将节点挪到最后
- return e.value;
- }
五、LinkedHashMap 的 remove 操作
节点的移除使用的是 HashMap 的 remove(Object key) ,移除其实是一样的,只是 LinkedHashMap 在最后需要处理双链表,这里使用的是扩展了 afterNodeRemoval(Node<K,V> p) 来进行处理。这个方法在 LinkedHashMap 的实现可以翻看本文前面的介绍。
Java8集合框架——LinkedHashMap源码分析的更多相关文章
- Java8集合框架——LinkedList源码分析
java.util.LinkedList 本文的主要目录结构: 一.LinkedList的特点及与ArrayList的比较 二.LinkedList的内部实现 三.LinkedList添加元素 四.L ...
- Java8集合框架——HashMap源码分析
java.util.HashMap 本文目录: 一.HashMap 的特点概述和说明 二.HashMap 的内部实现:从内部属性和构造函数说起 三.HashMap 的 put 操作 四.HashMap ...
- Java8集合框架——ArrayList源码分析
java.util.ArrayList 以下为主要介绍要点,从 Java 8 出发: 一.ArrayList的特点概述 二.ArrayList的内部实现:从内部属性和构造函数说起 三.ArrayLis ...
- Java8集合框架——LinkedHashSet源码分析
本文的目录结构如下: 一.LinkedHashSet 的 Javadoc 文档注释和简要说明 二.LinkedHashSet 的内部实现:构造函数 三.LinkedHashSet 的 add 操作和 ...
- Java8集合框架——HashSet源码分析
本文的目录结构: 一.HashSet 的 Javadoc 文档注释和简要说明 二.HashSet 的内部实现:内部属性和构造函数 三.HashSet 的 add 操作和扩容 四.HashSet 的 r ...
- Java基础-集合框架-ArrayList源码分析
一.JDK中ArrayList是如何实现的 1.先看下ArrayList从上而下的层次图: 说明: 从图中可以看出,ArrayList只是最下层的实现类,集合的规则和扩展都是AbstractList. ...
- 死磕 java集合之LinkedHashMap源码分析
欢迎关注我的公众号"彤哥读源码",查看更多源码系列文章, 与彤哥一起畅游源码的海洋. 简介 LinkedHashMap内部维护了一个双向链表,能保证元素按插入的顺序访问,也能以访问 ...
- Java集合之LinkedHashMap源码分析
概述 HashMap是无序的, 即put的顺序与遍历顺序不保证一样. LinkedHashMap是HashMap的一个子类, 它通过重写父类的相关方法, 实现自己的功能. 它保留插入的顺序. 如果需要 ...
- 死磕 java集合之LinkedHashSet源码分析
问题 (1)LinkedHashSet的底层使用什么存储元素? (2)LinkedHashSet与HashSet有什么不同? (3)LinkedHashSet是有序的吗? (4)LinkedHashS ...
随机推荐
- JS 循环赋值
var x_world_map_tiles = 100; var y_world_map_tiles = 100; var world_map_array = []; for (i=0; i<= ...
- Java8 HashMap详解
Java8 HashMap Java8 对 HashMap 进行了一些修改,最大的不同就是利用了红黑树,所以其由 数组+链表+红黑树 组成. 根据 Java7 HashMap 的介绍,我们知道,查找的 ...
- JMeter配置JDBC测试SQL Server/MySQL/ORACLE
一.配置SQL Server 1.下载sql驱动,将sqljdbc4.jar放到JMeter安装目录/lib下. 2.启动JMeter,右键添加->配置文件->JDBC Connectio ...
- python中提取位图信息(AttributeError: module 'struct' has no attribute 'unstack')
前言 今天这篇博文有点意思,它是从一个例子出发,从而体现出在编程中的种种细节和一些知识点的运用.和从前一样,我是人,离成神还有几十万里,所以无可避免的出现不严谨的地方甚至错误,请酌情阅读. 0x00 ...
- 新建Django 项目完整流程
1) 在桌面或者其他文件 新建项目名称 (mkdir 新建文件夹) 2)进入文件夹 pipenv --python3(用命令提示粘贴复制, 自己这样写经常有问题) 3) 启动虚拟环境 pipenv ...
- 吴裕雄--天生自然MySQL学习笔记:MySQL 安装
所有平台的 MySQL 下载地址为: MySQL 下载:https://dev.mysql.com/downloads/mysql/ 注意:安装过程我们需要通过开启管理员权限来安装,否则会由于权限不足 ...
- vbox虚拟机vdi文件用VMware打开
转自:https://blog.51cto.com/dahui09/1863486 方法一: 使用VirtualBox 自带的VBoxManage来进行格式转换: 1.安装VBoxManage 2.使 ...
- Codeforces 1296E2. String Coloring (hard version)
这道题和HDU1257一模一样,一开始窝都用贪心直接解,没法理解为什么求一个最长下降序列,直到看了巨巨的题解,先给出一个定理,Dilworth's theorem,离散学不好,补题两行泪,该定理是说, ...
- 运算符 Operator 及优先级
算数运算符 + - * / ** % /表示自然除,结果是浮点数.//为整除.python2.x版本/和//都是整除. 位运算符 & | ~ ^ << >> <& ...
- 5.8 Nginx 常用功能的配置