1010: [HNOI2008]玩具装箱toy

Time Limit: 1 Sec  Memory Limit: 162 MB
Submit: 10707  Solved: 4445
[Submit][Status][Discuss]

Description

  P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京。他使用自己的压缩器进行压
缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中。P教授有编号为1...N的N件玩具,第i件玩具经过
压缩后变成一维长度为Ci.为了方便整理,P教授要求在一个一维容器中的玩具编号是连续的。同时如果一个一维容
器中有多个玩具,那么两件玩具之间要加入一个单位长度的填充物,形式地说如果将第i件玩具到第j个玩具放到一
个容器中,那么容器的长度将为 x=j-i+Sigma(Ck) i<=K<=j 制作容器的费用与容器的长度有关,根据教授研究,
如果容器长度为x,其制作费用为(X-L)^2.其中L是一个常量。P教授不关心容器的数目,他可以制作出任意长度的容
器,甚至超过L。但他希望费用最小.

Input

  第一行输入两个整数N,L.接下来N行输入Ci.1<=N<=50000,1<=L,Ci<=10^7

Output

  输出最小费用

Sample Input

5 4
3
4
2
1
4

Sample Output

1
 
 
 
线性的DP关系式为 dp[i]=min{dp[i],dp[j]+(sum[i]-sum[j]+i-j-1-L)^2}
显然超时,考虑优化。
假设i选择时有k优于j(k>j 之所以选k大于j的原因是从前往后扫,考虑后面优于前面是否可以舍弃前面的);
1:首先证明满足单调性(换句话说就是对一个当前的i来说,如果k优于j,那么i之后k都优于j)
有dp[k]+(sum[i]-sum[k]+i-k-1-L)^2<dp[j]+(sum[i]-sum[j]+i-j-1-L)^2;(不妨令f[i]=sum[i]+i,C=1+L)
则有dp[k]+(f[i]-f[k]-C)^2<dp[j]+(f[i]-f[j]-C)^2
要证对于任意t>i 均有dp[k]+(f[t]-f[k]-C)^2<dp[j]+(f[i]-f[j]-C)^2  (令f[t]=f[i]+v,嗯经过一系列运算可以知道这个可以证明)
2:利用这个结论
若是利用这个结论条件肯定得先满足吧 所以有dp[k]+(f[i]-f[k]-C)^2<dp[j]+(f[i]-f[j]-C)^2
==》》 (dp[k]+(f[k]+c)^2-dp[j]-(f[j]+c)^2)/2*(f[k]-f[j])<=f[i]   (1)
即在从前向后扫描的过程中 只要满足(1)式,就可以去掉队首,若去不掉就将队首作为中介进行运算(这是第一个while所在)
其次,若是将一个元素添加到队列中,必须要将其和原倒数第一个进行比较,若其优于倒数第一个,则将其替换掉(第二个while),这个的意义所在是防止出现 中优,次优,最优这种队列排序,如果没有while的话,计算时只能选取一个中优的而不是最优的(这个是第一个while不能去掉的)具体代码实现请移步http://hzwer.com/2114.html

BZOJ1010单调性DP优化的更多相关文章

  1. 常见的DP优化类型

    常见的DP优化类型 1单调队列直接优化 如果a[i]单调增的话,显然可以用减单调队列直接存f[j]进行优化. 2斜率不等式 即实现转移方程中的i,j分离.b单调减,a单调增(可选). 令: 在队首,如 ...

  2. 【学习笔记】动态规划—各种 DP 优化

    [学习笔记]动态规划-各种 DP 优化 [大前言] 个人认为贪心,\(dp\) 是最难的,每次遇到题完全不知道该怎么办,看了题解后又瞬间恍然大悟(TAT).这篇文章也是花了我差不多一个月时间才全部完成 ...

  3. [总结]一些 DP 优化方法

    目录 注意本文未完结 写在前面 矩阵快速幂优化 前缀和优化 two-pointer 优化 决策单调性对一类 1D/1D DP 的优化 \(w(i,j)\) 只含 \(i\) 和 \(j\) 的项--单 ...

  4. DP 优化方法大杂烩 & 做题记录 I.

    标 * 的是推荐阅读的部分 / 做的题目. 1. 动态 DP(DDP)算法简介 动态动态规划. 以 P4719 为例讲一讲 ddp: 1.1. 树剖解法 如果没有修改操作,那么可以设计出 DP 方案 ...

  5. DP 优化方法合集

    0. 前言 写完这篇文章后发现自己对于 DP 的优化一窍不通,所以补了补 DP 的一些优化,写篇 blog 总结一下. 1. 单调队列/单调栈优化 1.2 算法介绍 这应该算是最基础的 DP 优化方法 ...

  6. DP 优化小技巧

    收录一些比较冷门的 DP 优化方法. 1. 树上依赖性背包 树上依赖性背包形如在树上选出若干个物品做背包问题,满足这些物品连通.由于 01 背包,多重背包和完全背包均可以在 \(\mathcal{O} ...

  7. dp优化 | 各种dp优化方式例题精选

    前言 本文选题都较为基础,仅用于展示优化方式,如果是要找题单而不是看基础概念,请忽略本文. 本文包含一些常见的dp优化("√"表示下文会进行展示,没"√"表示暂 ...

  8. NOIP2015 子串 (DP+优化)

    子串 (substring.cpp/c/pas) [问题描述] 有两个仅包含小写英文字母的字符串 A 和 B.现在要从字符串 A 中取出 k 个 互不重 叠 的非空子串,然后把这 k 个子串按照其在字 ...

  9. LCIS tyvj1071 DP优化

    思路: f[i][j]表示n1串第i个与n2串第j个且以j结尾的LCIS长度. 很好想的一个DP. 然后难点是优化.这道题也算是用到了DP优化的一个经典类型吧. 可以这样说,这类DP优化的起因是发现重 ...

随机推荐

  1. 利用CRM实现电话营销部门的管控 之数据暂缓

    每个公司都有相应的电话营销部门,有的公司是使用的集中的Call Center,有的公司则是使用简单的销售软件.不同的公司都有各自运行管理的方法. 此篇文章主要是介绍基于微软Dynamic CRM下的自 ...

  2. pynlpir.License过期问题解决方案

    报错信息:pynlpir.LicenseError: Your license appears to have expired. Try running "pynlpir update&qu ...

  3. Autofac的切面编程实现

    *:first-child { margin-top: 0 !important; } .markdown-body>*:last-child { margin-bottom: 0 !impor ...

  4. 华硕笔记本无法U盘启动,快捷键识别不了

    http://www.udaxia.com/upqd/8254.html 转载于:https://www.cnblogs.com/wanglinjie/p/10507888.html

  5. Ansible安装部署

    Ansible安装部署 Ansible是一种集成IT系统的配置管理, 应用部署, 执行特定任务的开源平台. 它基于Python语言实现, 部署只需在主控端部署Ansible环境, 被控端无需安装代理工 ...

  6. ACM及各类程序竞赛专业术语

    AC (Accepted) 程序通过 WA (Wrong Answer) 错误的答案 PE (Presentation Error) 输出格式错误 RE (Runtime Error) 程序执行错误 ...

  7. 小老板,我学的计算机组成原理告诉我半导体存储器都是断电后丢失的,为什么U盘SSD(固态硬盘)没事呢?

    什么是闪存: 快闪存储器(英语:flash memory),是一种电子式可清除程序化只读存储器的形式,允许在操作中被多次擦或写的存储器 存储原理 要讲解闪存的存储原理,还是要从EPROM和EEPROM ...

  8. 曹工谈并发:Synchronized升级为重量级锁后,靠什么 API 来阻塞自己

    背景 因为想知道java中的关键字,对应的操作系统级别的api是啥,本来打算整理几个我知道的出来,但是,尴尬的是,我发现java里最重要的synchronized关键字,我就不知道它对应的api是什么 ...

  9. python(MD5 单向加密)

    import hashlib m3 = hashlib.md5() #定义加密方式 src = bytes(", encoding="utf-8") #定义一个需要加密的 ...

  10. Nmon 监控结果分析

    一:CPU信息 SYS_SUMM图表: 1.折线图中蓝线为cpu占有率变化情况:粉线为磁盘IO的变化情况: 2.下面表各种左边的位磁盘的总体数据,包括如下几个: Avg tps during an i ...