题意

有 \(n\) 个数 \(s+1\ldots s+n\),求是否能将这 \(n\) 个数放到 \(1\ldots n\) 上,且当令原数为 \(x\),放到 \(y\) 位置时有 \(x \mod y=0\)。

不超过 \(100\) 组数据,\(1\le n \le 10^9,0\le s\le 10^9\)。

题解

看上去很吓人的数据范围,也是一个让你以为这是结论题的数据范围。

但是仔细观察可以发现,当 \(s+1\ldots s+n\) 中有 \(2\) 个及以上质数时,只有将他们安排到 \(1\) 位置或者质数自身位置才有 \(x\mod y=0\)。

首先尝试将这两个质数安排到其自身的位置,这要求 \([s+1,s+n]\cap [1,n]\neq \varnothing\),即要求 \(s<n\)。

那么此时 \([s+1,n]\) 就能够安排到自己的位置了,那么就只剩下 \([n+1,s+n]\) 和 \([1,s]\) 了,可以发现这就是 \(s\) 和 \(n\) 交换后的结果。

但是,当 \(s\) 与 \(n\) 交换后,或者 \(s\) 与 \(n\) 不能交换时,存在 \(2\) 个或以上质数,那么显然无解了。另外,根据结论,在 \([2,10^9]\) 范围内,大约 \(300\) 个数就会出现一次质数,这里保险起见设 \(1000\) 个数出现一次质数。

这里又有一个很神奇的问题,ans+=can[i] 前面不能加 if(!match[i]),具体原因未知。

代码

#include<cstdio>
#include<algorithm>
#include<cstring>
const int MAXN=2000+5;
int n,s,match[MAXN],ver,vis[MAXN];
bool can(int x)
{
vis[x]=ver;
for(int i=1;i<=n;i++)
if((s+x)%i==0 && (!match[i]||(vis[match[i]]!=ver&&can(match[i]))))
{
match[i]=x;
return 1;
}
return 0;
}
int main()
{
int T;
scanf("%d",&T);
for(int t=1;t<=T;t++)
{
memset(vis,0,sizeof(vis));
memset(match,0,sizeof(match));
scanf("%d %d",&n,&s);
if(s<n) std::swap(n,s);
if(n>1000)
{
printf("Case #%d: No\n",t);
continue;
}
int ans=0;
for(int i=1;i<=n;i++)
{
ver=i;
ans+=can(i);
}
printf("Case #%d: %s\n",t,ans==n?"Yes":"No");
}
return 0;
}

HDU5943 Kingdom of Obsession 题解的更多相关文章

  1. hdu5943 Kingdom of Obsession 二分图+打表找规律

    题目传送门 Kingdom of Obsession Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Ja ...

  2. hdu 5943 Kingdom of Obsession 二分图匹配+素数定理

    Kingdom of Obsession Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Oth ...

  3. HDU 5943 Kingdom of Obsession 【二分图匹配 匈牙利算法】 (2016年中国大学生程序设计竞赛(杭州))

    Kingdom of Obsession Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Oth ...

  4. 「国庆训练」Kingdom of Obsession(HDU-5943)

    题意 给定\(s,n\),把\(s+1,s+2,...,s+n\)这\(n\)个数填到\(1,2,...,n\)里,要求\(x\)只能填到\(x\)的因子的位置(即题目中\(x\%y=0\)那么x才能 ...

  5. HDU 5943 Kingdom of Obsession

    题意:n个人编号为[s+1, s+n],有n个座位编号为[1,n],编号为 i 的人只能坐到编号为它的约数的座位,问每个人是否都有位置坐. 题解:由于质数只能坐到1或者它本身的位置上,所以如果[n+1 ...

  6. [HDOJ5943]Kingdom of Obsession(最大匹配,思路)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5943 题意:n个人编号为[s+1,s+n],有n个座位编号为[1,n],编号为i的人只能坐到编号为它的 ...

  7. HDU 5938 Kingdom of Obsession(数论 + 二分图匹配)

    题意: 给定S,N,把S+1,S+2,...S+N这N个数填到1,2,...,N里,要求X只能填到X的因子的位置.(即X%Y=0,那么X才能放在Y位置) 问是否能够放满. 分析:经过小队的分析得出的结 ...

  8. 【HDOJ5943】Kingdom of Obsession(数论)

    题意:给定n个人,n个座位,人的编号是[1,n],座位的编号是[s+1,s+n],编号为i的人能坐在编号为j的座位上的条件是j%i=0 问是否存在一组方案使得座位和人一一对应 n,s<=1e9 ...

  9. hdu 5943(素数间隔+二分图匹配)

    Kingdom of Obsession Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Oth ...

随机推荐

  1. Catalyst 3850 升级-1

    Cisco Catalyst 3850交换机使用Cisco IOS XE软件. Cisco IOS XE软件是一个包含一组包文件的一个集合. 我们可以使用以下两种模式之一在Cisco Catalyst ...

  2. java 类型转换一些相关问题

    猜测:第二句 第四句会出错 结果是第二句和第四句会出错.说明了父类可以向子类类型转换,而不同的子类直接不能类型转换.

  3. 14.浏览器屏幕缩放bug修复

    问题:浏览器缩放时,轮播图显示不全,滚动水平滚动条,发现图片缺失 解决:隐藏水平滚动条,页面都只提供垂直滚动条的需求 global.css /* 水平超出部分默认隐藏 */ #app { overfl ...

  4. 【PAT甲级】1051 Pop Sequence (25 分)(栈的模拟)

    题意: 输入三个正整数M,N,K(<=1000),分别代表栈的容量,序列长度和输入序列的组数.接着输入K组出栈序列,输出是否可能以该序列的顺序出栈.数字1~N按照顺序随机入栈(入栈时机随机,未知 ...

  5. GitHub vs. Bitbucket 不只是功能不同

    https://www.oschina.net/translate/bitbucket-vs-github-its-more-than-just-features 让我们回到2005年,Bitkeep ...

  6. 最权威的json自定义格式

    1.封装result,作为返回的对象 public class Result<T> {        private int code;    private String msg;    ...

  7. js 模拟鼠标拖动

    window.addEventListener('message', function (event) { if (event.source != window) return; if (event. ...

  8. centos将celery写入系统服务

    第一步: 在/etc/下创建目录 celery/celery.conf 代码如下: CELERYD_NODES='w1 w2 w3' # 启动的celery进程的进程名 CELERY_BIN='/ro ...

  9. tomcat注册为windows服务

    打开CMD,进入到Tomcat的bin目录,执行命令:service.bat install  [service_name] 如果卸载服务,可以执行:sc delete [service_name]

  10. 吴裕雄 Bootstrap 前端框架开发——Bootstrap 排版:使段落突出显示

    <!DOCTYPE html> <html> <head> <title>菜鸟教程(runoob.com)</title> <meta ...