#coding:utf-8
import tensorflow as tf
import os
def read_and_decode(filename):
#根据文件名生成一个队列
filename_queue = tf.train.string_input_producer([filename])
reader = tf.TFRecordReader()
_, serialized_example = reader.read(filename_queue) #返回文件名和文件
features = tf.parse_single_example(serialized_example,
features={
'label': tf.FixedLenFeature([], tf.int64),
'img_raw' : tf.FixedLenFeature([], tf.string),
}) img = tf.decode_raw(features['img_raw'], tf.uint8)
img = tf.reshape(img, [227, 227, 3])
img = (tf.cast(img, tf.float32) * (1. / 255) - 0.5)*2
label = tf.cast(features['label'], tf.int32)
print img,label
return img, label def get_batch(image, label, batch_size,crop_size):
#数据扩充变换
distorted_image = tf.random_crop(image, [crop_size, crop_size, 3])#随机裁剪
distorted_image = tf.image.random_flip_up_down(distorted_image)#上下随机翻转
distorted_image = tf.image.random_brightness(distorted_image,max_delta=63)#亮度变化
distorted_image = tf.image.random_contrast(distorted_image,lower=0.2, upper=1.8)#对比度变化 #生成batch
#shuffle_batch的参数:capacity用于定义shuttle的范围,如果是对整个训练数据集,获取batch,那么capacity就应该够大
#保证数据打的足够乱
images, label_batch = tf.train.shuffle_batch([distorted_image, label],batch_size=batch_size,
num_threads=1,capacity=2000,min_after_dequeue=1000) return images, label_batch class network(object): def lenet(self,images,keep_prob): '''
根据tensorflow中的conv2d函数,我们先定义几个基本符号
输入矩阵 W×W,这里只考虑输入宽高相等的情况,如果不相等,推导方法一样,不多解释。
filter矩阵 F×F,卷积核
stride值 S,步长
输出宽高为 new_height、new_width
在Tensorflow中对padding定义了两种取值:VALID、SAME。下面分别就这两种定义进行解释说明。
VALID
new_height = new_width = (W – F + 1) / S #结果向上取整
SAME
new_height = new_width = W / S #结果向上取整
''' images = tf.reshape(images,shape=[-1,32,32,3])
#images = (tf.cast(images,tf.float32)/255.0-0.5)*2
#第一层,卷积层 32,32,3--->5,5,3,6--->28,28,6
#卷积核大小为5*5 输入层深度为3即三通道图像 卷积核深度为6即卷积核的个数
conv1_weights = tf.get_variable("conv1_weights",[5,5,3,6],initializer = tf.truncated_normal_initializer(stddev=0.1))
conv1_biases = tf.get_variable("conv1_biases",[6],initializer = tf.constant_initializer(0.0))
#移动步长为1 不使用全0填充
conv1 = tf.nn.conv2d(images,conv1_weights,strides=[1,1,1,1],padding='VALID')
#激活函数Relu去线性化
relu1 = tf.nn.relu(tf.nn.bias_add(conv1,conv1_biases)) #第二层 最大池化层 28,28,6--->1,2,2,1--->14,14,6
#池化层过滤器大小为2*2 移动步长为2 使用全0填充
pool1 = tf.nn.max_pool(relu1, ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME') #第三层 卷积层 14,14,6--->5,5,6,16--->10,10,16
#卷积核大小为5*5 当前层深度为6 卷积核的深度为16
conv2_weights = tf.get_variable("conv_weights",[5,5,6,16],initializer = tf.truncated_normal_initializer(stddev=0.1))
conv2_biases = tf.get_variable("conv2_biases",[16],initializer = tf.constant_initializer(0.0)) conv2 = tf.nn.conv2d(pool1,conv2_weights,strides=[1,1,1,1],padding='VALID') #移动步长为1 不使用全0填充
relu2 = tf.nn.relu(tf.nn.bias_add(conv2,conv2_biases)) #第四层 最大池化层 10,10,16--->1,2,2,1--->5,5,16
#池化层过滤器大小为2*2 移动步长为2 使用全0填充
pool2 = tf.nn.max_pool(relu2,ksize = [1,2,2,1],strides=[1,2,2,1],padding='SAME') #第五层 全连接层
fc1_weights = tf.get_variable("fc1_weights",[5*5*16,1024],initializer = tf.truncated_normal_initializer(stddev=0.1))
fc1_biases = tf.get_variable("fc1_biases",[1024],initializer = tf.constant_initializer(0.1)) #[1,1024]
pool2_vector = tf.reshape(pool2,[-1,5*5*16]) #特征向量扁平化 原始的每一张图变成了一行9×9*64列的向量
fc1 = tf.nn.relu(tf.matmul(pool2_vector,fc1_weights)+fc1_biases) #为了减少过拟合 加入dropout层 fc1_dropout = tf.nn.dropout(fc1,keep_prob) #第六层 全连接层
#神经元节点数为1024 分类节点2
fc2_weights = tf.get_variable("fc2_weights",[1024,2],initializer=tf.truncated_normal_initializer(stddev=0.1))
fc2_biases = tf.get_variable("fc2_biases",[2],initializer = tf.constant_initializer(0.1))
fc2 = tf.matmul(fc1_dropout,fc2_weights) + fc2_biases return fc2
def lenet_loss(self,fc2,y_): #第七层 输出层
#softmax
y_conv = tf.nn.softmax(fc2)
labels=tf.one_hot(y_,2)
#定义交叉熵损失函数
#cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y_conv),reduction_indices=[1]))
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits = y_conv, labels =labels))
self.cost = loss
return self.cost def lenet_optimer(self,loss):
train_optimizer = tf.train.GradientDescentOptimizer(lr).minimize(loss)
return train_optimizer def train():
image,label=read_and_decode("./train.tfrecords")
batch_image,batch_label=get_batch(image,label,batch_size=30,crop_size=32)
#建立网络,训练所用
x = tf.placeholder("float",shape=[None,32,32,3],name='x-input')
y_ = tf.placeholder("int32",shape=[None])
keep_prob = tf.placeholder(tf.float32) net=network()
#inf=net.buildnet(batch_image)
inf = net.lenet(x,keep_prob)
loss=net.lenet_loss(inf,y_) #计算loss
opti=net.optimer(loss) #梯度下降 correct_prediction = tf.equal(tf.cast(tf.argmax(inf,1),tf.int32),batch_label)
accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32)) init=tf.global_variables_initializer()
with tf.Session() as session:
with tf.device("/gpu:0"):
session.run(init)
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(coord=coord)
max_iter=10000
iter=0
if os.path.exists(os.path.join("model",'model.ckpt')) is True:
tf.train.Saver(max_to_keep=None).restore(session, os.path.join("model",'model.ckpt'))
while iter<max_iter:
#loss_np,_,label_np,image_np,inf_np=session.run([loss,opti,batch_image,batch_label,inf])
b_batch_image,b_batch_label = session.run([batch_image,batch_label])
loss_np,_=session.run([loss,opti],feed_dict={x:b_batch_image,y_:b_batch_label,keep_prob:0.6})
if iter%50==0:
print 'trainloss:',loss_np
if iter%500==0:
#accuracy_np = session.run([accuracy])
accuracy_np = session.run([accuracy],feed_dict={x:b_batch_image,y_:b_batch_label,keep_prob:1.0})
print 'xxxxxxxxxxxxxxxxxxxxxx',accuracy_np
iter+=1
coord.request_stop()#queue需要关闭,否则报错
coord.join(threads)
if __name__ == '__main__':
train()

Tensorflow学习教程------实现lenet并且进行二分类的更多相关文章

  1. Tensorflow学习教程------普通神经网络对mnist数据集分类

    首先是不含隐层的神经网络, 输入层是784个神经元 输出层是10个神经元 代码如下 #coding:utf-8 import tensorflow as tf from tensorflow.exam ...

  2. Tensorflow学习教程------过拟合

    Tensorflow学习教程------过拟合   回归:过拟合情况 / 分类过拟合 防止过拟合的方法有三种: 1 增加数据集 2 添加正则项 3 Dropout,意思就是训练的时候隐层神经元每次随机 ...

  3. Tensorflow学习教程------代价函数

    Tensorflow学习教程------代价函数   二次代价函数(quadratic cost): 其中,C表示代价函数,x表示样本,y表示实际值,a表示输出值,n表示样本的总数.为简单起见,使用一 ...

  4. Tensorflow学习教程------读取数据、建立网络、训练模型,小巧而完整的代码示例

    紧接上篇Tensorflow学习教程------tfrecords数据格式生成与读取,本篇将数据读取.建立网络以及模型训练整理成一个小样例,完整代码如下. #coding:utf-8 import t ...

  5. Tensorflow学习教程------lenet多标签分类

    本文在上篇的基础上利用lenet进行多标签分类.五个分类标准,每个标准分两类.实际来说,本文所介绍的多标签分类属于多任务学习中的联合训练,具体代码如下. #coding:utf-8 import te ...

  6. tensorflow 学习教程

    tensorflow 学习手册 tensorflow 学习手册1:https://cloud.tencent.com/developer/section/1475687 tensorflow 学习手册 ...

  7. Tensorflow学习教程------创建图启动图

    Tensorflow作为目前最热门的机器学习框架之一,受到了工业界和学界的热门追捧.以下几章教程将记录本人学习tensorflow的一些过程. 在tensorflow这个框架里,可以讲是若数据类型,也 ...

  8. Tensorflow学习教程------非线性回归

    自己搭建神经网络求解非线性回归系数 代码 #coding:utf-8 import tensorflow as tf import numpy as np import matplotlib.pypl ...

  9. Tensorflow学习教程------tensorboard网络运行和可视化

    tensorboard可以将训练过程中的一些参数可视化,比如我们最关注的loss值和accuracy值,简单来说就是把这些值的变化记录在日志里,然后将日志里的这些数据可视化. 首先运行训练代码 #co ...

随机推荐

  1. robotframework+selenium2Library怎样不用手动关掉代理

    每次跑脚本,启动浏览器都要手动关掉代理,太费劲了,发现最简单的办法就是在局域网设置里面勾上跳过本地地址的代理服务器,并且在例外里写上127.0.0.1 就这么简单有没有??

  2. vue 循环和v-if 不能混合使用

    <div class="item page-item" v-for="(item,i) in pageNum" @click="setCurre ...

  3. wget 403 forbidden

    CMD: wget --user-agent="Mozilla" down_url wget -U Mozilla 下载地址 wget -U NoSuchBrowser/1.0 下 ...

  4. UVA - 1606 Amphiphilic Carbon Molecules(两亲性分子)(扫描法)

    题意:平面上有n(n <= 1000)个点,每个点为白点或者黑点.现在需放置一条隔板,使得隔板一侧的白点数加上另一侧的黑点数总数最大.隔板上的点可以看做是在任意一侧. 分析:枚举每个基准点i,将 ...

  5. Spring Tools 4 STS没有创建Dynamic Web Project的选项 以及 Spring Tools 4 STS New 菜单没有Spring Bean Configuration File选项

    Spring Tools 4 STS没有创建Dynamic Web Project的选项 STS4默认不带Dynamic Web Project插件. 解决方法:1.打开:Help 选择 Instal ...

  6. java虚拟机之JVM生命周期

    java生命周期分为以下三部分:启动,运行,消亡. 启动.启动一个Java程序时,一个JVM实例就产生了,任何一个拥有public static void main(String[] args)函数的 ...

  7. BZOJ 4029 [HEOI2015]定价

    题解: !!!!!! 分类讨论,情况挺多 #include<iostream> #include<cstdio> #include<cstring> using n ...

  8. Ajax校验用户名是否可用

    准备 导包:DBUtil,JDBC,C3P0 在src下导入c3p0-config.xml 导入JDBCUtil 创建数据库 第2.3.条查看https://blog.csdn.net/weixin_ ...

  9. MVC学生管理系统-阶段IV(修改学生信息)

    项目源码 :https://download.csdn.net/download/weixin_44718300/11091042 前期准备,主体框架, 学生列表显示  请看阶段一文章 添加学生信息 ...

  10. javascript 连续赋值(连等运算)问题研究

    前几天看到一个javascript 连续赋值的问题,运行了一下,结果出乎意料,发现这里的水真的有点深啊,连续赋值的底层机制,没有一本前端书籍有详细介绍的,自己做实验研究了一下,先来看结果: var a ...