官方文档详见:http://docs.spring.io/spring-kafka/docs/1.0.2.RELEASE/reference/htmlsingle/

Authors

Gary Russell , Artem Bilan

1.0.2.RELEASE

Copyright © 2016 Pivotal Software Inc.

Copies of this document may be made for your own use and for distribution to others, provided that you do not charge any fee for such copies and further provided that each copy contains this Copyright Notice, whether distributed in print or electronically.


1. Preface

The Spring for Apache Kafka project applies core Spring concepts to the development of Kafka-based messaging solutions. We provide a "template" as a high-level abstraction for sending messages. We also provide support for Message-driven POJOs.

2. Introduction

This first part of the reference documentation is a high-level overview of Spring for Apache Kafka and the underlying concepts and some code snippets that will get you up and running as quickly as possible.

2.1 Quick Tour for the impatient

2.1.1 Introduction

This is the 5 minute tour to get started with Spring Kafka.

Prerequisites: install and run Apache Kafka Then grab the spring-kafka JAR and all of its dependencies - the easiest way to do that is to declare a dependency in your build tool, e.g. for Maven:

<dependency>
<groupId>org.springframework.kafka</groupId>
<artifactId>spring-kafka</artifactId>
<version>1.0.2.RELEASE</version>
</dependency>

And for Gradle:

compile 'org.springframework.kafka:spring-kafka:1.0.2.RELEASE'

Compatibility

  • Apache Kafka 0.9.0.1
  • Tested with Spring Framework version dependency is 4.2.5 but it is expected that the framework will work with earlier versions of Spring.
  • Annotation-based listeners require Spring Framework 4.1 or higher, however.
  • Minimum Java version: 7.

Very, Very Quick

Using plain Java to send and receive a message:

@Test
public void testAutoCommit() throws Exception {
logger.info("Start auto");
ContainerProperties containerProps = new ContainerProperties("topic1", "topic2");
KafkaMessageListenerContainer<Integer, String> container = createContainer(containerProps);
final CountDownLatch latch = new CountDownLatch(4);
containerProps.setMessageListener(new MessageListener<Integer, String>() { @Override
public void onMessage(ConsumerRecord<Integer, String> message) {
logger.info("received: " + message);
latch.countDown();
} });
container.setBeanName("testAuto");
container.start();
Thread.sleep(1000); // wait a bit for the container to start
KafkaTemplate<Integer, String> template = createTemplate();
template.setDefaultTopic(topic1);
template.sendDefault(0, "foo");
template.sendDefault(2, "bar");
template.sendDefault(0, "baz");
template.sendDefault(2, "qux");
template.flush();
assertTrue(latch.await(60, TimeUnit.SECONDS));
container.stop();
logger.info("Stop auto"); }
private KafkaMessageListenerContainer<Integer, String> createContainer(
ContainerProperties containerProps) {
Map<String, Object> props = consumerProps();
DefaultKafkaConsumerFactory<Integer, String> cf =
new DefaultKafkaConsumerFactory<Integer, String>(props);
KafkaMessageListenerContainer<Integer, String> container =
new KafkaMessageListenerContainer<>(cf, containerProps);
return container;
} private KafkaTemplate<Integer, String> createTemplate() {
Map<String, Object> senderProps = senderProps();
ProducerFactory<Integer, String> pf =
new DefaultKafkaProducerFactory<Integer, String>(senderProps);
KafkaTemplate<Integer, String> template = new KafkaTemplate<>(pf);
return template;
} private Map<String, Object> consumerProps() {
Map<String, Object> props = new HashMap<>();
props.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092");
props.put(ConsumerConfig.GROUP_ID_CONFIG, group);
props.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, true);
props.put(ConsumerConfig.AUTO_COMMIT_INTERVAL_MS_CONFIG, "100");
props.put(ConsumerConfig.SESSION_TIMEOUT_MS_CONFIG, "15000");
props.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, IntegerDeserializer.class);
props.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class);
return props;
} private Map<String, Object> senderProps() {
Map<String, Object> props = new HashMap<>();
props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092");
props.put(ProducerConfig.RETRIES_CONFIG, 0);
props.put(ProducerConfig.BATCH_SIZE_CONFIG, 16384);
props.put(ProducerConfig.LINGER_MS_CONFIG, 1);
props.put(ProducerConfig.BUFFER_MEMORY_CONFIG, 33554432);
props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, IntegerSerializer.class);
props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.class);
return props;
}

With Java Configuration

A similar example but with Spring configuration in Java:

@Autowired
private Listener listener; @Autowired
private KafkaTemplate<Integer, String> template; @Test
public void testSimple() throws Exception {
waitListening("foo");
template.send("annotated1", 0, "foo");
assertTrue(this.listener.latch1.await(10, TimeUnit.SECONDS));
} @Configuration
@EnableKafka
public class Config { @Bean
ConcurrentKafkaListenerContainerFactory<Integer, String>
kafkaListenerContainerFactory() {
ConcurrentKafkaListenerContainerFactory<Integer, String> factory =
new ConcurrentKafkaListenerContainerFactory<>();
factory.setConsumerFactory(consumerFactory());
return factory;
} @Bean
public ConsumerFactory<Integer, String> consumerFactory() {
return new DefaultKafkaConsumerFactory<>(consumerConfigs());
} @Bean
public Map<String, Object> consumerConfigs() {
Map<String, Object> props = new HashMap<>();
props.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, embeddedKafka.getBrokersAsString());
...
return props;
} @Bean
public Listener listener() {
return new Listener();
} @Bean
public ProducerFactory<Integer, String> producerFactory() {
return new DefaultKafkaProducerFactory<>(producerConfigs());
} @Bean
public Map<String, Object> producerConfigs() {
Map<String, Object> props = new HashMap<>();
props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, embeddedKafka.getBrokersAsString());
...
return props;
} @Bean
public KafkaTemplate<Integer, String> kafkaTemplate() {
return new KafkaTemplate<Integer, String>(producerFactory());
} }
public class Listener {

    private final CountDownLatch latch1 = new CountDownLatch(1);

    @KafkaListener(id = "foo", topics = "annotated1")
public void listen1(String foo) {
this.latch1.countDown();
} }

3. Reference

This part of the reference documentation details the various components that comprise Spring for Apache Kafka. The main chapter covers the core classes to develop a Kafka application with Spring.

3.1 Using Spring for Apache Kafka

3.1.1 Sending Messages

KafkaTemplate

The KafkaTemplate wraps a producer and provides convenience methods to send data to kafka topics. Both asynchronous and synchronous methods are provided, with the async methods returning a Future.

ListenableFuture<SendResult<K, V>> sendDefault(V data);

ListenableFuture<SendResult<K, V>> sendDefault(K key, V data);

ListenableFuture<SendResult<K, V>> sendDefault(int partition, K key, V data);

ListenableFuture<SendResult<K, V>> send(String topic, V data);

ListenableFuture<SendResult<K, V>> send(String topic, K key, V data);

ListenableFuture<SendResult<K, V>> send(String topic, int partition, V data);

ListenableFuture<SendResult<K, V>> send(String topic, int partition, K key, V data);

ListenableFuture<SendResult<K, V>> send(Message<?> message);

// Flush the producer.

void flush();

The first 3 methods require that a default topic has been provided to the template.

To use the template, configure a producer factory and provide it in the template’s constructor:

@Bean
public ProducerFactory<Integer, String> producerFactory() {
return new DefaultKafkaProducerFactory<>(producerConfigs());
} @Bean
public Map<String, Object> producerConfigs() {
Map<String, Object> props = new HashMap<>();
props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092");
...
return props;
} @Bean
public KafkaTemplate<Integer, String> kafkaTemplate() {
return new KafkaTemplate<Integer, String>(producerFactory());
}

The template can also be configured using standard <bean/> definitions.

Then, to use the template, simply invoke one of its methods.

When using the methods with a Message<?> parameter, topic, partition and key information is provided in a message header:

  • KafkaHeaders.TOPIC
  • KafkaHeaders.PARTITION_ID
  • KafkaHeaders.MESSAGE_KEY

with the message payload being the data.

Optionally, you can configure the KafkaTemplate with a ProducerListener to get an async callback with the results of the send (success or failure) instead of waiting for the Future to complete.

public interface ProducerListener<K, V> {

    void onSuccess(String topic, Integer partition, K key, V value, RecordMetadata recordMetadata);

    void onError(String topic, Integer partition, K key, V value, Exception exception);

    boolean isInterestedInSuccess();

}

By default, the template is configured with a LoggingProducerListener which logs errors and does nothing when the send is successful.

onSuccess is only called if isInterestedInSuccess returns true.

For convenience, the abstract ProducerListenerAdapter is provided in case you only want to implement one of the methods. It returns false forisInterestedInSuccess.

Notice that the send methods return a ListenableFuture<SendResult>. You can register a callback with the listener to receive the result of the send asynchronously.

ListenableFuture<SendResult<Integer, String>> future = template.send("foo");
future.addCallback(new ListenableFutureCallback<SendResult<Integer, String>>() { @Override
public void onSuccess(SendResult<Integer, String> result) {
...
} @Override
public void onFailure(Throwable ex) {
...
} });

The SendResult has two properties, a ProducerRecord and RecordMetadata; refer to the Kafka API documentation for information about those objects.

If you wish to block the sending thread, to await the result, you can invoke the future’s get() method. You may wish to invoke flush() before waiting or, for convenience, the template has a constructor with an autoFlush parameter which will cause the template to flush() on each send. Note, however that flushing will likely significantly reduce performance.

3.1.2 Receiving Messages

Messages can be received by configuring a MessageListenerContainer and providing a MessageListener, or by using the @KafkaListener annotation.

Message Listener Containers

Two MessageListenerContainer implementations are provided:

  • KafkaMessageListenerContainer
  • ConcurrentMessageListenerContainer

The KafkaMessageListenerContainer receives all message from all topics/partitions on a single thread. The ConcurrentMessageListenerContainer delegates to 1 or more KafkaMessageListenerContainer s to provide multi-threaded consumption.

KafkaMessageListenerContainer

The following constructors are available.

public KafkaMessageListenerContainer(ConsumerFactory<K, V> consumerFactory,
ContainerProperties containerProperties) public KafkaMessageListenerContainer(ConsumerFactory<K, V> consumerFactory,
ContainerProperties containerProperties,
TopicPartitionInitialOffset... topicPartitions)

Each takes a ConsumerFactory and information about topics and partitions, as well as other configuration in a ContainerProperties object. The second constructor is used by the ConcurrentMessageListenerContainer (see below) to distribute TopicPartitionInitialOffset across the consumer instances.ContainerProperties has the following constructors:

public ContainerProperties(TopicPartitionInitialOffset... topicPartitions)

public ContainerProperties(String... topics)

public ContainerProperties(Pattern topicPattern)

The first takes an array of TopicPartitionInitialOffset arguments to explicitly instruct the container which partitions to use (using the consumer assign()method), and with an optional initial offset: a positive value is an absolute offset; a negative value is relative to the current last offset within a partition. The offsets are applied when the container is started. The second takes an array of topics and Kafka allocates the partitions based on the group.id property - distributing partitions across the group. The third uses a regex Pattern to select the topics.

Refer to the JavaDocs for ContainerProperties for more information about the various properties that can be set.

ConcurrentMessageListenerContainer

The single constructor is similar to the first KafkaListenerContainer constructor:

public ConcurrentMessageListenerContainer(ConsumerFactory<K, V> consumerFactory,
ContainerProperties containerProperties)

It also has a property concurrency, e.g. container.setConcurrency(3) will create 3 KafkaMessageListenerContainer s.

For the first constructor, kafka will distribute the partitions across the consumers. For the second constructor, the ConcurrentMessageListenerContainer distributes the TopicPartition s across the delegate KafkaMessageListenerContainer s.

If, say, 6 TopicPartition s are provided and the concurrency is 3; each container will get 2 partitions. For 5 TopicPartition s, 2 containers will get 2 partitions and the third will get 1. If the concurrency is greater than the number of TopicPartitions, the concurrency will be adjusted down such that each container will get one partition.

Committing Offsets

Several options are provided for committing offsets. If the enable.auto.commit consumer property is true, kafka will auto-commit the offsets according to its configuration. If it is false, the containers support the following AckMode s.

The consumer poll() method will return one or more ConsumerRecords; the MessageListener is called for each record; the following describes the action taken by the container for each AckMode :

  • RECORD - commit the offset when the listener returns after processing the record.
  • BATCH - commit the offset when all the records returned by the poll() have been processed.
  • TIME - commit the offset when all the records returned by the poll() have been processed as long as the ackTime since the last commit has been exceeded.
  • COUNT - commit the offset when all the records returned by the poll() have been processed as long as ackCount records have been received since the last commit.
  • COUNT_TIME - similar to TIME and COUNT but the commit is performed if either condition is true.
  • MANUAL - the message listener (AcknowledgingMessageListener) is responsible to acknowledge() the Acknowledgment; after which, the same semantics asBATCH are applied.
  • MANUAL_IMMEDIATE - commit the offset immediately when the Acknowledgment.acknowledge() method is called by the listener.

MANUAL, and MANUAL_IMMEDIATE require the listener to be an AcknowledgingMessageListener.

The commitSync() or commitAsync() method on the consumer is used, depending on the syncCommits container property.

public interface AcknowledgingMessageListener<K, V> {

    void onMessage(ConsumerRecord<K, V> record, Acknowledgment acknowledgment);

}

public interface Acknowledgment {

    void acknowledge();

}

This gives the listener control over when offsets are committed.

@KafkaListener Annotation

The @KafkaListener annotation provides a mechanism for simple POJO listeners:

public class Listener {

    @KafkaListener(id = "foo", topics = "myTopic")
public void listen(String data) {
...
} }

This mechanism requires a listener container factory, which is used to configure the underlying ConcurrentMessageListenerContainer: by default, a bean with namekafkaListenerContainerFactory is expected.

@Bean
KafkaListenerContainerFactory<ConcurrentMessageListenerContainer<Integer, String>>
kafkaListenerContainerFactory() {
ConcurrentKafkaListenerContainerFactory<Integer, String> factory =
new ConcurrentKafkaListenerContainerFactory<>();
factory.setConsumerFactory(consumerFactory());
factory.setConcurrency(3);
factory.getContainerProperties().setPollTimeout(3000);
return factory;
} @Bean
public ConsumerFactory<Integer, String> consumerFactory() {
return new DefaultKafkaConsumerFactory<>(consumerConfigs());
} @Bean
public Map<String, Object> consumerConfigs() {
Map<String, Object> props = new HashMap<>();
props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, embeddedKafka.getBrokersAsString());
...
return props;
}

Notice that to set container properties, you must use the getContainerProperties() method on the factory. It is used as a template for the actual properties injected into the container.

You can also configure POJO listeners with explicit topics and partitions (and, optionally, their initial offsets):

@KafkaListener(id = "bar", topicPartitions =
{ @TopicPartition(topic = "topic1", partitions = { "0", "1" }),
@TopicPartition(topic = "topic2", partitions = "0",
partitionOffsets = @PartitionOffset(partition = "1", initialOffset = "100"))
})

public void listen(ConsumerRecord<?, ?> record) {
...
}

Each partition can be specified in the partitions or partitionOffsets attribute, but not both.

When using manual AckMode, the listener can also be provided with the Acknowledgment; this example also shows how to use a different container factory.

@KafkaListener(id = "baz", topics = "myTopic",
containerFactory = "kafkaManualAckListenerContainerFactory")

public void listen(String data, Acknowledgment ack) {
...
ack.acknowledge();
}

Finally, metadata about the message is available from message headers:

@KafkaListener(id = "qux", topicPattern = "myTopic1")
public void listen(@Payload String foo,
@Header(KafkaHeaders.RECEIVED_MESSAGE_KEY) Integer key,
@Header(KafkaHeaders.RECEIVED_PARTITION_ID) int partition,
@Header(KafkaHeaders.RECEIVED_TOPIC) String topic) {
...
}

Filtering Messages

In certain scenarios, such as rebalancing, a message may be redelivered that has already been processed. The framework cannot know whether such a message has been processed or not, that is an application-level function. This is known as the Idempotent Receiver pattern and Spring Integration provides an implementation thereof.

The Spring for Apache Kafka project also provides some assistance by means of the FilteringMessageListenerAdapter class, which can wrap yourMessageListener. This class takes an implementation of RecordFilterStrategy where you implement the filter method to signal that a message is a duplicate and should be discarded.

FilteringAcknowledgingMessageListenerAdapter is also provided for wrapping an AcknowledgingMessageListener. This has an additional propertyackDiscarded which indicates whether the adapter should acknowledge the discarded record; it is true by default.

When using @KafkaListener, set the RecordFilterStrategy (and optionally ackDiscarded) on the container factory and the listener will be wrapped in the appropriate filtering adapter.

Retrying Deliveries

If your listener throws an exception, the default behavior is to invoke the ErrorHandler, if configured, or logged otherwise.

To retry deliveries, convenient listener adapters - RetryingMessageListenerAdapter and RetryingAcknowledgingMessageListenerAdapter are provided, depending on whether you are using a MessageListener or an AcknowledgingMessageListener.

These can be configured with a RetryTemplate and RecoveryCallback<Void> - see the spring-retry project for information about these components. If a recovery callback is not provided, the exception is thrown to the container after retries are exhausted. In that case, the ErrorHandler will be invoked, if configured, or logged otherwise.

When using @KafkaListener, set the RetryTemplate (and optionally recoveryCallback) on the container factory and the listener will be wrapped in the appropriate retrying adapter.

3.1.3 Serialization/Deserialization and Message Conversion

Apache Kafka provides a high-level API for serializing/deserializing record values as well as their keys. It is present with theorg.apache.kafka.common.serialization.Serializer<T> and org.apache.kafka.common.serialization.Deserializer<T> abstractions with some built-in implementations. Meanwhile we can specify simple (de)serializer classes using Producer and/or Consumer configuration properties, e.g.:

props.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, IntegerDeserializer.class);
props.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class);
...
props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, IntegerSerializer.class);
props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.class);

for more complex or particular cases, the KafkaConsumer, and therefore KafkaProducer, provides overloaded constructors to accept (De)Serializer instances forkeys and/or values, respectively.

To meet this API, the DefaultKafkaProducerFactory and DefaultKafkaConsumerFactory also provide properties to allow to inject a custom (De)Serializer to target Producer/Consumer.

For this purpose Spring for Apache Kafka also provides JsonSerializer/JsonDeserializer implementations based on the Jackson JSON processor. WhenJsonSerializer is pretty simple and just lets to write any Java object as a JSON byte[], the JsonDeserializer requires an additional Class<?> targetTypeargument to allow to deserializer consumed byte[] to the proper target object. The JsonDeserializer can be extended to the particular generic type, when the last one is resolved at runtime, instead of compile-time additional type argument:

JsonDeserializer<Bar> barDeserializer = new JsonDeserializer<>(Bar.class);
...
JsonDeserializer<Foo> fooDeserializer = new JsonDeserializer<Foo>() { };

Both JsonSerializer and JsonDeserializer can be customized with provided ObjectMapper. Plus you can extend them to implement some particular configuration logic in the configure(Map<String, ?> configs, boolean isKey) method.

Although Serializer/Deserializer API is pretty simple and flexible from the low-level Kafka Consumer and Producer perspective, it is not enough on the Messaging level, where KafkaTemplate and @KafkaListener are present. To easy convert to/from org.springframework.messaging.Message, Spring for Apache Kafka provides MessageConverter abstraction with the MessagingMessageConverter implementation and its StringJsonMessageConverter customization. TheMessageConverter can be injected into KafkaTemplate instance directly and via AbstractKafkaListenerContainerFactory bean definition for the@KafkaListener.containerFactory() property:

@Bean
public KafkaListenerContainerFactory<?> kafkaJsonListenerContainerFactory() {
ConcurrentKafkaListenerContainerFactory<Integer, String> factory =
new ConcurrentKafkaListenerContainerFactory<>();
factory.setConsumerFactory(consumerFactory());
factory.setMessageConverter(new StringJsonMessageConverter());
return factory;
}
...
@KafkaListener(topics = "jsonData",
containerFactory = "kafkaJsonListenerContainerFactory")

public void jsonListener(Foo foo) {
...
}

Detecting Idle Asynchronous Consumers

While efficient, one problem with asynchronous consumers is detecting when they are idle - users might want to take some action if no messages arrive for some period of time.

You can configure the listener container to publish a ListenerContainerIdleEvent when some time passes with no message delivery. While the container is idle, an event will be published every idleEventInterval milliseconds.

To configure this feature, set the idleEventInterval on the container:

@Bean
public KafKaMessageListenerContainer(ConnectionFactory connectionFactory) {
ContainerProperties containerProps = new ContainerProperties("topic1", "topic2");
...
containerProps.setIdleEventInterval(60000L);
...
KafKaMessageListenerContainer<String, String> container = new KafKaMessageListenerContainer<>(...);
return container;
}

Or, for a @KafkaListener…​

@Bean
public ConcurrentKafkaListenerContainerFactory kafkaListenerContainerFactory() {
ConcurrentKafkaListenerContainerFactory<String, String> factory =
new ConcurrentKafkaListenerContainerFactory<>();
...
factory.getContainerProperties().setIdleEventInterval(60000L);
...
return factory;
}

In each of these cases, an event will be published once per minute while the container is idle.

Event Consumption

You can capture these events by implementing ApplicationListener - either a general listener, or one narrowed to only receive this specific event. You can also use@EventListener, introduced in Spring Framework 4.2.

The following example combines the @KafkaListener and @EventListener into a single class. It’s important to understand that the application listener will get events for all containers so you may need to check the listener id if you want to take specific action based on which container is idle. You can also use the @EventListenercondition for this purpose.

The events have 4 properties:

  • source - the listener container instance
  • id - the listener id (or container bean name)
  • idleTime - the time the container had been idle when the event was published
  • topicPartitions - the topics/partitions that the container was assigned at the time the event was generated
public class Listener {

    @KafkaListener(id = "qux", topics = "annotated")
public void listen4(@Payload String foo, Acknowledgment ack) {
...
} @EventListener(condition = "event.listenerId.startsWith('qux-')")
public void eventHandler(ListenerContainerIdleEvent event) {
this.event = event;
eventLatch.countDown();
} }
Important

Event listeners will see events for all containers; so, in the example above, we narrow the events received based on the listener ID. Since containers created for the @KafkaListener support concurrency, the actual containers are named id-n where the n is a unique value for each instance to support the concurrency. Hence we use startsWith in the condition.

Caution

If you wish to use the idle event to stop the lister container, you should not call container.stop() on the thread that calls the listener - it will cause delays and unnecessary log messages. Instead, you should hand off the event to a different thread that can then stop the container. Also, you should not stop() the container instance in the event if it is a child container, you should stop the concurrent container instead.

3.2 Testing Applications

3.2.1 Introduction

The spring-kafka-test jar contains some useful utilities to assist with testing your applications.

3.2.2 JUnit

o.s.kafka.test.utils.KafkaUtils provides some static methods to set up producer and consumer properties:

/**
* Set up test properties for an {@code <Integer, String>} consumer.
* @param group the group id.
* @param autoCommit the auto commit.
* @param embeddedKafka a {@link KafkaEmbedded} instance.
* @return the properties.
*/

public static Map<String, Object> consumerProps(String group, String autoCommit,
KafkaEmbedded embeddedKafka) { ... } /**
* Set up test properties for an {@code <Integer, String>} producer.
* @param embeddedKafka a {@link KafkaEmbedded} instance.
* @return the properties.
*/

public static Map<String, Object> senderProps(KafkaEmbedded embeddedKafka) { ... }

A JUnit @Rule is provided that creates an embedded kafka server.

/**
* Create embedded Kafka brokers.
* @param count the number of brokers.
* @param controlledShutdown passed into TestUtils.createBrokerConfig.
* @param topics the topics to create (2 partitions per).
*/

public KafkaEmbedded(int count, boolean controlledShutdown, String... topics) { ... } /**
*
* Create embedded Kafka brokers.
* @param count the number of brokers.
* @param controlledShutdown passed into TestUtils.createBrokerConfig.
* @param partitions partitions per topic.
* @param topics the topics to create.
*/

public KafkaEmbedded(int count, boolean controlledShutdown, int partitions, String... topics) { ... }

The embedded kafka class has a utility method allowing you to consume for all the topics it created:

Map<String, Object> consumerProps = KafkaTestUtils.consumerProps("testT", "false", embeddedKafka);
DefaultKafkaConsumerFactory<Integer, String> cf = new DefaultKafkaConsumerFactory<Integer, String>(
consumerProps);
Consumer<Integer, String> consumer = cf.createConsumer();
embeddedKafka.consumeFromAllEmbeddedTopics(consumer);

The KafkaTestUtils has some utility methods to fetch results from the consumer:

/**
* Poll the consumer, expecting a single record for the specified topic.
* @param consumer the consumer.
* @param topic the topic.
* @return the record.
* @throws org.junit.ComparisonFailure if exactly one record is not received.
*/

public static <K, V> ConsumerRecord<K, V> getSingleRecord(Consumer<K, V> consumer, String topic) { ... } /**
* Poll the consumer for records.
* @param consumer the consumer.
* @return the records.
*/

public static <K, V> ConsumerRecords<K, V> getRecords(Consumer<K, V> consumer) { ... }

Usage:

...
template.sendDefault(0, 2, "bar");
ConsumerRecord<Integer, String> received = KafkaTestUtils.getSingleRecord(consumer, "topic");
...

When the embedded server is started by JUnit, it sets a system property spring.embedded.kafka.brokers to the address of the broker(s). A convenient constantKafkaEmbedded.SPRING_EMBEDDED_KAFKA_BROKERS is provided for this property.

3.2.3 Hamcrest Matchers

The o.s.kafka.test.hamcrest.KafkaMatchers provides the following matchers:

/**
* @param key the key
* @param <K> the type.
* @return a Matcher that matches the key in a consumer record.
*/

public static <K> Matcher<ConsumerRecord<K, ?>> hasKey(K key) { ... } /**
* @param value the value.
* @param <V> the type.
* @return a Matcher that matches the value in a consumer record.
*/

public static <V> Matcher<ConsumerRecord<?, V>> hasValue(V value) { ... } /**
* @param partition the partition.
* @return a Matcher that matches the partition in a consumer record.
*/

public static Matcher<ConsumerRecord<?, ?>> hasPartition(int partition) { ... }

3.2.4 AssertJ Conditions

/**
* @param key the key
* @param <K> the type.
* @return a Condition that matches the key in a consumer record.
*/

public static <K> Condition<ConsumerRecord<K, ?>> key(K key) { ... } /**
* @param value the value.
* @param <V> the type.
* @return a Condition that matches the value in a consumer record.
*/

public static <V> Condition<ConsumerRecord<?, V>> value(V value) { ... } /**
* @param partition the partition.
* @return a Condition that matches the partition in a consumer record.
*/

public static Condition<ConsumerRecord<?, ?>> partition(int partition) { ... }

3.2.5 Example

Putting it all together:

public class KafkaTemplateTests {

    private static final String TEMPLATE_TOPIC = "templateTopic";

    @ClassRule
public static KafkaEmbedded embeddedKafka = new KafkaEmbedded(1, true, TEMPLATE_TOPIC); @Test
public void testTemplate() throws Exception {
Map<String, Object> consumerProps = KafkaTestUtils.consumerProps("testT", "false", embeddedKafka);
DefaultKafkaConsumerFactory<Integer, String> cf =
new DefaultKafkaConsumerFactory<Integer, String>(consumerProps);
KafkaMessageListenerContainer<Integer, String> container =
new KafkaMessageListenerContainer<>(cf, TEMPLATE_TOPIC);
final BlockingQueue<ConsumerRecord<Integer, String>> records = new LinkedBlockingQueue<>();
container.setMessageListener(new MessageListener<Integer, String>() { @Override
public void onMessage(ConsumerRecord<Integer, String> record) {
System.out.println(record);
records.add(record);
} });
container.setBeanName("templateTests");
container.start();
ContainerTestUtils.waitForAssignment(container, embeddedKafka.getPartitionsPerTopic());
Map<String, Object> senderProps = KafkaTestUtils.senderProps(embeddedKafka);
ProducerFactory<Integer, String> pf =
new DefaultKafkaProducerFactory<Integer, String>(senderProps);
KafkaTemplate<Integer, String> template = new KafkaTemplate<>(pf);
template.setDefaultTopic(TEMPLATE_TOPIC);
template.sendDefault("foo");
assertThat(records.poll(10, TimeUnit.SECONDS), hasValue("foo"));
template.sendDefault(0, 2, "bar");
ConsumerRecord<Integer, String> received = records.poll(10, TimeUnit.SECONDS);
assertThat(received, hasKey(2));
assertThat(received, hasPartition(0));
assertThat(received, hasValue("bar"));
template.send(TEMPLATE_TOPIC, 0, 2, "baz");
received = records.poll(10, TimeUnit.SECONDS);
assertThat(received, hasKey(2));
assertThat(received, hasPartition(0));
assertThat(received, hasValue("baz"));
} }

The above uses the hamcrest matchers; with AssertJ, the final part looks like this…​

...
assertThat(records.poll(10, TimeUnit.SECONDS)).has(value("foo"));
template.sendDefault(0, 2, "bar");
ConsumerRecord<Integer, String> received = records.poll(10, TimeUnit.SECONDS);
assertThat(received).has(key(2));
assertThat(received).has(partition(0));
assertThat(received).has(value("bar"));
template.send(TEMPLATE_TOPIC, 0, 2, "baz");
received = records.poll(10, TimeUnit.SECONDS);
assertThat(received).has(key(2));
assertThat(received).has(partition(0));
assertThat(received).has(value("baz"));
}
}

4. Spring Integration

This part of the reference shows how to use the spring-integration-kafka module of Spring Integration.

4.1 Spring Integration Kafka

4.1.1 Introduction

This documentation pertains to versions 2.0.0 and above; for documentation for earlier releases, see the 1.3.x README.

Spring Integration Kafka is now based on the Spring for Apache Kafka project. It provides the following components:

  • Outbound Channel Adapter
  • Message-Driven Channel Adapter

These are discussed in the following sections.

4.1.2 Outbound Channel Adapter

The Outbound channel adapter is used to publish messages from a Spring Integration channel to Kafka topics. The channel is defined in the application context and then wired into the application that sends messages to Kafka. Sender applications can publish to Kafka via Spring Integration messages, which are internally converted to Kafka messages by the outbound channel adapter, as follows: the payload of the Spring Integration message will be used to populate the payload of the Kafka message, and (by default) the kafka_messageKey header of the Spring Integration message will be used to populate the key of the Kafka message.

The target topic and partition for publishing the message can be customized through the kafka_topic and kafka_partitionId headers, respectively.

In addition, the <int-kafka:outbound-channel-adapter> provides the ability to extract the key, target topic, and target partition by applying SpEL expressions on the outbound message. To that end, it supports the mutually exclusive pairs of attributes topic/topic-expressionmessage-key/message-key-expression, andpartition-id/partition-id-expression, to allow the specification of topic,message-key and partition-id respectively as static values on the adapter, or to dynamically evaluate their values at runtime against the request message.

Important

The KafkaHeaders interface (provided by spring-kafka) contains constants used for interacting with headers. The messageKey and topic default headers now require a kafka_ prefix. When migrating from an earlier version that used the old headers, you need to specifymessage-key-expression="headers.messageKey" and topic-expression="headers.topic" on the <int-kafka:outbound-channel-adapter>, or simply change the headers upstream to the new headers from KafkaHeaders using a <header-enricher> or MessageBuilder. Or, of course, configure them on the adapter using topic and message-key if you are using constant values.

NOTE : If the adapter is configured with a topic or message key (either with a constant or expression), those are used and the corresponding header is ignored. If you wish the header to override the configuration, you need to configure it in an expression, such as:

topic-expression="headers.topic != null ? headers.topic : 'myTopic'".

The adapter requires a KafkaTemplate.

Here is an example of how the Kafka outbound channel adapter is configured with XML:

<int-kafka:outbound-channel-adapter id="kafkaOutboundChannelAdapter"
kafka-template="template"
auto-startup="false"
channel="inputToKafka"
topic="foo"
message-key-expression="'bar'"
partition-id-expression="2">
</int-kafka:outbound-channel-adapter> <bean id="template" class="org.springframework.kafka.core.KafkaTemplate">
<constructor-arg>
<bean class="org.springframework.kafka.core.DefaultKafkaProducerFactory">
<constructor-arg>
<map>
<entry key="bootstrap.servers" value="localhost:9092" />
... <!-- more producer properties -->
</map>
</constructor-arg>
</bean>
</constructor-arg>
</bean>

As you can see, the adapter requires a KafkaTemplate which, in turn, requires a suitably configured KafkaProducerFactory.

When using Java Configuration:

@Bean
@ServiceActivator(inputChannel = "toKafka")
public MessageHandler handler() throws Exception {
KafkaProducerMessageHandler<String, String> handler =
new KafkaProducerMessageHandler<>(kafkaTemplate());
handler.setTopicExpression(new LiteralExpression("someTopic"));
handler.setMessageKeyExpression(new LiteralExpression("someKey"));
return handler;
} @Bean
public KafkaTemplate<String, String> kafkaTemplate() {
return new KafkaTemplate<>(producerFactory());
} @Bean
public ProducerFactory<String, String> producerFactory() {
Map<String, Object> props = new HashMap<>();
props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, this.brokerAddress);
// set more properties
return new DefaultKafkaProducerFactory<>(props);
}

4.1.3 Message Driven Channel Adapter:

The KafkaMessageDrivenChannelAdapter (<int-kafka:message-driven-channel-adapter>) uses a spring-kafka KafkaMessageListenerContainer orConcurrentListenerContainer.

An example of xml configuration variant is shown here:

<int-kafka:message-driven-channel-adapter
id="kafkaListener"
listener-container="container1"
auto-startup="false"
phase="100"
send-timeout="5000"
channel="nullChannel"
error-channel="errorChannel" /> <bean id="container1" class="org.springframework.kafka.listener.KafkaMessageListenerContainer">
<constructor-arg>
<bean class="org.springframework.kafka.core.DefaultKafkaConsumerFactory">
<constructor-arg>
<map>
<entry key="bootstrap.servers" value="localhost:9092" />
...
</map>
</constructor-arg>
</bean>
</constructor-arg>
<constructor-arg name="topics" value="foo" />
</bean>

When using Java Configuration:

@Bean
public KafkaMessageDrivenChannelAdapter<String, String>
adapter(KafkaMessageListenerContainer<String, String> container) {
KafkaMessageDrivenChannelAdapter<String, String> kafkaMessageDrivenChannelAdapter =
new KafkaMessageDrivenChannelAdapter<>(container);
kafkaMessageDrivenChannelAdapter.setOutputChannel(received());
return kafkaMessageDrivenChannelAdapter;
} @Bean
public KafkaMessageListenerContainer<String, String> container() throws Exception {
ContainerProperties properties = new ContainerProperties(this.topic);
// set more properties
return new KafkaMessageListenerContainer<>(consumerFactory(), properties);
} @Bean
public ConsumerFactory<String, String> consumerFactory() {
Map<String, Object> props = new HashMap<>();
props.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, this.brokerAddress);
// set more properties
return new DefaultKafkaConsumerFactory<>(props);
}

5. Other Resources

In addition to this reference documentation, there exist a number of other resources that may help you learn about Spring and Apache Kafka.

Spring for Apache Kafka的更多相关文章

  1. Spring 对Apache Kafka的支持与集成

    1. 引言 Apache Kafka 是一个分布式的.容错的流处理系统.在本文中,我们将介绍Spring对Apache Kafka的支持,以及原生Kafka Java客户端Api 所提供的抽象级别. ...

  2. Spring for Apache Kafka @KafkaListener使用及注意事项

    官方文档:   https://docs.spring.io/spring-kafka/reference/html/ @KafkaListener The @KafkaListener annota ...

  3. java企业架构 spring mvc +mybatis + KafKa+Flume+Zookeeper

    声明:该框架面向企业,是大型互联网分布式企业架构,后期会介绍linux上部署高可用集群项目. 项目基础功能截图(自提供了最小部分)      平台简介        Jeesz是一个分布式的框架,提供 ...

  4. Flafka: Apache Flume Meets Apache Kafka for Event Processing

    The new integration between Flume and Kafka offers sub-second-latency event processing without the n ...

  5. spring boot与kafka

    1.项目搭建 2.关键代码与配置 3.性能调优 注意,本项目基于spring boot 1,如果是spring boot 2有可能会报错.相应的包需要更新 1.项目搭建 kafka版本:kafka_2 ...

  6. 【转载】Understanding When to use RabbitMQ or Apache Kafka

    https://content.pivotal.io/rabbitmq/understanding-when-to-use-rabbitmq-or-apache-kafka RabbitMQ: Erl ...

  7. Understanding When to use RabbitMQ or Apache Kafka

    https://content.pivotal.io/rabbitmq/understanding-when-to-use-rabbitmq-or-apache-kafka How do humans ...

  8. Spring boot 集成Kafka

    搭建Kafka集群,参考: https://www.cnblogs.com/jonban/p/kafka.html 源码示例如下: 1.新建 Maven 项目 kafka 2.pom.xml < ...

  9. spring boot 2.x 系列 —— spring boot 整合 kafka

    文章目录 一.kafka的相关概念: 1.主题和分区 2.分区复制 3. 生产者 4. 消费者 5.broker和集群 二.项目说明 1.1 项目结构说明 1.2 主要依赖 二. 整合 kafka 2 ...

随机推荐

  1. BlockingQueue-线程的阻塞队列

    BlockingQueue作为线程容器,可以为线程同步提供有力的保障,其主要用到的方法包括: add(E o); //将指定的元素添加到此队列中(如果立即可行),在成功时返回 true,其他情况则抛出 ...

  2. Trie 树(转)

    看了很多 Trie 树的介绍, 这篇讲的最好,简单易懂(特别是代码部分),直接转载:http://www.cnblogs.com/dolphin0520/archive/2011/10/11/2207 ...

  3. hadoop2.2编程:DFS API 操作

    1. Reading data from a hadoop URL 说明:想要让java从hadoop的dfs里读取数据,则java 必须能够识别hadoop hdfs URL schema, 因此我 ...

  4. android Permission 访问权限许可

    程序执行需要读取到安全敏感项必需在androidmanifest.xml中声明相关权限请求, 完整列表如下: android.permission.ACCESS_CHECKIN_PROPERTIES允 ...

  5. 【转】Xcode7.1环境下上架iOS App到AppStore 流程 (Part 二)

    原文网址:http://www.cnblogs.com/ChinaKingKong/p/4964549.html 前言部分 part二部分主要讲解 iOS App IDs 的创建.概要文件的配置.以及 ...

  6. Ajax在PC端可以使用但在手机端不能使用

    ajax代码如下,仔细看看也没有什么错,电脑端可以调用并正确的返回结果,手机端却不可以 function GetSumData(time) { var device = "Phone&quo ...

  7. Linux创建新用户以及useradd adduser的区别

    从阿里云那弄了个机子玩玩,系统用的是Ubuntu12.04.刚等上去时候是用root登录的,首先想到的就是创建一个用户. 使用 useradd myname 发现/home目录下没有myname的家目 ...

  8. python 正则表达式 贪婪模式的简介和匹配时的几种模式

    看到一篇文章,关于python正则的,http://www.cnblogs.com/huxi/archive/2010/07/04/1771073.html 贪婪模式与非贪婪模式: 正则表达式通常用于 ...

  9. Page Object 模式编写UiAutomator脚本

    在我们学习Page Object Model之前,我们先了解一下Page Object Model(以下简称POM). 为什么要POM 用UiAutomator启动UI自动化测试不是一件困难的任务.你 ...

  10. 我记录综合系统学习研究之用户管理五(如何利用wojilu打造一个全新的SNS应用)

    wojilu框架特别适合快速开发多用户分享内容应用,比如知乎,digg这类应用. 对于博客等用户程序,要有4个入口:1)用户展示入口(展示自己的应用) 2)用户后台管理入口(管理自己的应用) 3)聚合 ...