Use the QR decomposition to prove Hadamard's inequality: if $X=(x_1,\cdots,x_n)$, then $$\bex |\det X|\leq \prod_{j=1}^n \sen{x_j}. \eex$$ Equality holds here if and only if the $x_j$ are mutually orthogonal or some $x_j$ are zero.

解答: $$\beex \bea |\det X|^2&=\det (X^*X)\\ &=\det (R^*Q^*QR)\\ &=\det (R^*R)\\ &=\prod_{j=1}^n r_{ii}^2\\ &\leq \prod_{j=1}^n \sen{x_j}^2, \eea \eeex$$ where the last inequality follows from the fact that the norm of a vector $\geq$ that of is projection (to some subspace).

[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.1.3的更多相关文章

  1. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.1

    Let $x,y,z$ be linearly independent vectors in $\scrH$. Find a necessary and sufficient condition th ...

  2. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7

    For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and ...

  3. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10

    Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$ ...

  4. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.5

    Show that the inner product $$\bex \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots\vee y_k} \eex$$ is eq ...

  5. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1

    Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex ...

  6. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.6

    Let $A$ and $B$ be two matrices (not necessarily of the same size). Relative to the lexicographicall ...

  7. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.4

    (1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK ...

  8. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.8

    For any matrix $A$ the series $$\bex \exp A=I+A+\frac{A^2}{2!}+\cdots+\frac{A^n}{n!}+\cdots \eex$$ c ...

  9. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.7

    The set of all invertible matrices is a dense open subset of the set of all $n\times n$ matrices. Th ...

  10. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.6

    If $\sen{A}<1$, then $I-A$ is invertible, and $$\bex (I-A)^{-1}=I+A+A^2+\cdots, \eex$$ aa converg ...

随机推荐

  1. tomcat错误信息解决方案 严重:StandardServer.await:

    看到这个报错我的第一反应就是端口被占用,用netstat -ant命令查看发现8080端口没有被占用,也可以看到 tomcat的进程已经存在,但是不能对外提供服务. 1.独立运行的tomcat.exe ...

  2. power designer

    概述 Power Designer 是Sybase公司的CASE工具集,使用它可以方便地对管理信息系统进行分析设计,他几乎包括了数据库模型设计的全过程.利用Power Designer可以制作数据流程 ...

  3. 设置nginx禁止通过IP访问服务器的方法

    在Nginx上设置禁止通过IP访问服务器,只允许通过域名访问,以避免别人把未备案的域名解析到自己的服务器IP而导致服务器被断网. nginx的默认虚拟主机允许用户通过IP访问,或者通过未设置的域名访问 ...

  4. 【1】Bootstrap入门引言

    Bootstrap学习者要具备的一些要求: [1]xhtml常用标签的基础知识 [2]xhtml+css布局的基础知识 [3]html5+css3的基础知识 ===================== ...

  5. 【prism】前期准备

    在网上下了prism框架源码,目前最新版本为4.1,其中包含的内容如下: 其中包含三类文件: 1.类似于Desktop only-Prism Library.bat的批处理文件,用来打开相应的Pris ...

  6. 一步步学习ASP.NET MVC3 (11)——@Ajax,JavaScriptResult(2)

    请注明转载地址:http://www.cnblogs.com/arhat 今天在补一章吧,由于明天的事可能比较多,老魏可能顾不上了,所以今天就再加把劲在写一章吧.否则对不起大家了,大家看的比较快,可是 ...

  7. noj [1480] 懒惰的风纪委Elaine (多重背包)

    http://ac.nbutoj.com/Problem/view.xhtml?id=1480 [1480] 懒惰的风纪委Elaine 时间限制: 1000 ms 内存限制: 65535 K 问题描述 ...

  8. 数据结构-------单链表(C++)

    相关信息: /** * @subject 数据结构 实验2 * @author 信管1142班 201411671210 赖俊杰 * @project 单链表 * @time 2015年10月29日1 ...

  9. Uva 654 Ratio

    题意: 给两个数, n, m 构造一个序列, 分母从1 ~ m, 并且j / i越来越接近n/m. 思路: 如果存在 j / i 趋近于 n / m 那么则有 j = n * i / m + 0.5( ...

  10. centos 下查找软件安装在哪里的命令

    linux centos 下查找软件所安装的目录在哪里 1. 如果是rpm安装的可以:rpm -ql linux(1)package-name 具体你可以man rpm 2. 可以在根目录上直接fin ...