Use the QR decomposition to prove Hadamard's inequality: if $X=(x_1,\cdots,x_n)$, then $$\bex |\det X|\leq \prod_{j=1}^n \sen{x_j}. \eex$$ Equality holds here if and only if the $x_j$ are mutually orthogonal or some $x_j$ are zero.

解答: $$\beex \bea |\det X|^2&=\det (X^*X)\\ &=\det (R^*Q^*QR)\\ &=\det (R^*R)\\ &=\prod_{j=1}^n r_{ii}^2\\ &\leq \prod_{j=1}^n \sen{x_j}^2, \eea \eeex$$ where the last inequality follows from the fact that the norm of a vector $\geq$ that of is projection (to some subspace).

[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.1.3的更多相关文章

  1. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.1

    Let $x,y,z$ be linearly independent vectors in $\scrH$. Find a necessary and sufficient condition th ...

  2. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7

    For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and ...

  3. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10

    Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$ ...

  4. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.5

    Show that the inner product $$\bex \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots\vee y_k} \eex$$ is eq ...

  5. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1

    Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex ...

  6. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.6

    Let $A$ and $B$ be two matrices (not necessarily of the same size). Relative to the lexicographicall ...

  7. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.4

    (1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK ...

  8. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.8

    For any matrix $A$ the series $$\bex \exp A=I+A+\frac{A^2}{2!}+\cdots+\frac{A^n}{n!}+\cdots \eex$$ c ...

  9. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.7

    The set of all invertible matrices is a dense open subset of the set of all $n\times n$ matrices. Th ...

  10. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.6

    If $\sen{A}<1$, then $I-A$ is invertible, and $$\bex (I-A)^{-1}=I+A+A^2+\cdots, \eex$$ aa converg ...

随机推荐

  1. CentOS 6.4 安装SecurectCRT并破解

    经过验证此方法使用于Centos 系列. 相关说明: 上篇发了个Linux(Ubuntu) 下 SecureCRT 7 30天循环破解在启动的时候会多输入一次确认窗口, 后来maz-1网友留言说可以用 ...

  2. PHP联合sqlserver2008使用的全过程 ( 原创 亲测)

    一.环境 php5.2.5 sqlserver2008 win7 二.配置PHP 1.打开php.in将extension=php_mssql.dll的注释符号去掉. 2.打开php.in将mssql ...

  3. php开学之环境搭建

    1. php版本选择 1.1 PHP非线程安全与线程安全版本的选择技巧 1.2 版本区别 PHP的大版本主要分三支:PHP4/PHP5/PHP6 其中,PHP4由于太古老.对QQ支持不力已基本被淘汰, ...

  4. 【python】Python 3 +pycharm中文支持解决方案

    使用环境:window10 + python 3.5.1 方法:在代码前端增加代码:# -*-coding:gbk-*-

  5. controller.pp 各组件的安装顺序

    controller 属性:         admin_address => $controller_node_address,         public_address => $c ...

  6. poj 2175 Evacuation Plan 最小费用流判定,消圈算法

    题目链接 题意:一个城市有n座行政楼和m座避难所,现发生核战,要求将避难所中的人员全部安置到避难所中,每个人转移的费用为两座楼之间的曼哈顿距离+1,题目给了一种方案,问是否为最优方案,即是否全部的人员 ...

  7. 大话string

    最近看完大话string之后深有感悟,虽然写c#不知不觉的已经写了四年了,但是很多原理也一直不太明白,最近看完这个才算略微明白了一些. string类型有2个重要的特性,一致性和驻留性. 一致性就是说 ...

  8. bootstrap form

    http://getbootstrap.com/examples/starter-template/ <form class="form-horizontal" role=& ...

  9. JS & DOM 对象

    22:36 2013/6/4 详情参照W3C文档标准 Browser 对象(顶层对象) DOM Window DOM Navigator DOM Screen DOM History DOM Loca ...

  10. 【一起学OpenFOAM】04 OpenFOAM的学习资源

    OpenFOAM的学习资料并不多,个人猜测也许是与软件的类型有关系. 对于商用软件来讲,由于要占领市场,软件开发商自然是巴不得会用软件的人越多越好,因为他们卖的是软件,会用的人越多,软件卖得越好.他们 ...