Decision Boundaries for Deep Learning and other Machine Learning classifiers

H2O, one of the leading deep learning framework in python, is now available in R. We will show how to get started with H2O, its working, plotting of decision boundaries and finally lessons learned during this series.

By Takashi J. OZAKI, Ph. D.

For a while (at least several months since many people began to implement it with Python and/or Theano, PyLearn2 or something like that), nearly I’ve given up practicing Deep Learning with R and I’ve felt I was left alone much further away from advanced technology…

But now we have a great masterpiece: {h2o}, an implementation of H2O framework in R. I believe {h2o} is the easiest way of applying Deep Learning technique to our own datasets because we don’t have to even write any code scripts but only to specify some of its parameters. That is, using {h2o} we are free from complicated codes; we can only focus on its underlying essences and theories.

With using {h2o} on R, in principle we can implement “Deep Belief Net”, that is the original version of Deep Learning*1. I know it’s already not the state-of-the-art style of Deep Learning, but it must be helpful for understanding how Deep Learning works on actual datasets. Please remember a previous post of this blog that argues about how decision boundaries tell us how each classifier works in terms of overfitting or generalization, if you already read this blog. :)

It’s much simple how to tell which overfits or well gets generalized with the given dataset generated by 4 sets of fixed 2D normal distribution. My points are: 1) if decision boundaries look well smoothed, they’re well generalized, 2) if they look too complicated, they’re overfitting, because underlying true distributions can be clearly divided into 4 quadrants with 2 perpendicular axes.

OK, let’s run the same trial with Deep Learning of {h2o} on R in order to see how DL works on the given dataset.

Datasets

Please get 3 datasets from my repository on GitHub:
simple XOR patterncomplex XOR pattern, and a grid dataset.

Github Repo for the current post. Of course, feel free to clone it; but any pull request will be rejected because this repository is not for software development. :P)

Getting started with {h2o} on R

First of all, H2O itself requires Java Virtual Machine environment. Prior to installing {h2o}, you have to install the latest version of Java SE SDK*2.

Next, {h2o} is not distributed via CRAN but available on GitHub. In order to install it, you have to add some arguments to run install.packages function.

> install.packages("h2o",
repos=(c("http://s3.amazonaws.com/h2o-release/h2o/master/1542/R",
getOption("repos"))))
> library("h2o", lib.loc="C:/Program Files/R/R-3.0.2/library")
----------------------------------------------------------------------
Your next step is to start H2O and get a connection object (named
'localH2O', for example):
> localH2O = h2o.init()
For H2O package documentation, ask for help:
> ??h2o After starting H2O, you can use the Web UI at http://localhost:54321
For more information visit http://docs.0xdata.com ----------------------------------------------------------------------
At any rate, now you can run {h2o} in R.

How {h2o} works on R

Once {h2o} package loaded, first you have to boot an H2O instance on Java VM. In the case below “nthreads” argument was set to -1, that means all CPU cores must be used for the H2O instance. If you want spare any cores, specify the number of cores you want to use for H2O, e.g. 7 or 6.

> localH2O <- h2o.init(ip = "localhost", port = 54321, startH2O = TRUE,
nthreads=-1) H2O is not running yet, starting it now... Note: In case of errors look at the following log files:
C:\Users\XXX\AppData\Local\Temp\RtmpghjvGo/h2o_XXX_win_started_from_r.out
C:\Users\XXX\AppData\Local\Temp\RtmpghjvGo/h2o_XXX_win_started_from_r.err java version "1.7.0_67"
Java(TM) SE Runtime Environment (build 1.7.0_67-b01)
Java HotSpot(TM) 64-Bit Server VM (build 24.65-b04, mixed mode) Successfully connected to http://localhost:54321 R is connected to H2O cluster:
H2O cluster uptime: 1 seconds 506 milliseconds
H2O cluster version: 2.7.0.1542
H2O cluster name: H2O_started_from_R
H2O cluster total nodes: 1
H2O cluster total memory: 7.10 GB
H2O cluster total cores: 8
H2O cluster allowed cores: 8
H2O cluster healthy: TRUE

Now you can run all functions of {h2o} package. Then load the simple XOR pattern and the grid dataset.

> cfData <- h2o.importFile(localH2O, path = "xor_simple.txt")
> pgData<-h2o.importFile(localH2O,path="pgrid.txt")

We’re ready to draw various decision boundaries using {h2o} package, in particular with Deep Learning. Let’s go to the next step.

Prior to trying Deep Learning, see the previous result

To compare a result of Deep Learning with ones of the other classifiers, please see the previous result. In the ones below, I ran decision tree, SVM with some sets of parameters, neural network (with only a hidden layer), and random forest.

Linearly inseparable and simple XOR pattern

As clearly seen, all of the classifiers showed decision boundaries well reflecting its true distribution.

Linearly inseparable and complex XOR pattern

In contrast to the simple XOR pattern, the result showed a wide variety of decision boundaries. Decision tree, neural network and random forest estimated much more complicated boundaries than the true boundaries, although SVM with well generalized by specific parameters gave natural and well smoothed boundaries (but classification accuracy was not good).

Drawing decision boundaries with {h2o}

OK, let’s run h2o.deeplearning function to estimate decision boundaries using Deep Learning.

Our primary interest here is what kind of set of tuning parameters shows what kind of decision boundaries. In h2o.deeplearning function, we can tune parameters (arguments) below:

  • activation: Tanh, Rectifier and Maxout. We can also add “WithDropout” to implement the dropout procedure.
  • hidden: details of hidden layers, by vector. c(3,2) means 1st hidden layer with 3 units and 2nd one with 2 units. rep(3,3) means 3 consecutive hidden layers with 3 units.
  • epochs: the number of iteration. Of course larger epochs, more trained output you can get.
  • autoencoder: logical value that determines whether autoencoder is used or not. Here we ignore it because the sample size is too small.
  • hidden_dropout_ratio: dropout ratio of hidden layers by vector. Even if you want to implement the dropout procedure, we recommend to specify only 0.5 according to Baldi (NIPS, 2013).

For simplification, in this post I only tune “activation” and “hidden”. In particular about “hidden”, the number of hidden layers are fixed to 2 or 3 and the number of units are fixed to 5 or 10. Anyway we can run it as below.

> res.dl<-h2o.deeplearning(x=1:2,y=3,data=xorsData,classification=T,
activation="Tanh",hidden=c(10,10),epochs=10)
> prd.dl<-h2o.predict(res.dl,newdata=pgData)
> prd.dl.df<-as.data.frame(prd.dl)
> xors <- read.table("xor_simple.txt", header=T)
> plot(xors[,-3], pch=19, col=c(rep('blue',50), rep('red',50)),
cex=3, xlim=c(-4,4), ylim=c(-4,4), main="Tanh, (10,10)")
> par(new=T)
> contour(px, py, array(prd.dl.df[,1], dim=c(length(px), length(py))),
xlim=c(-4,4), ylim=c(-4,4), col="purple", lwd=3,drawlabels=F)

A script above is just an example; please rewrite or adjust it to your environment.

simple XOR pattern with 2 hidden layers

Rectifier

Maxout

Maxout failed to estimate a classification model correctly… perhaps it was caused by too small sample size (only 100) or too small dimension (just 2D). On the other hand, Tanh and Rectifier showed fairly good decision boundaries.

complex XOR pattern with 2 hidden layers

Rectifier

In contrast to the result of the simple XOR pattern, Rectifier worked better than Tanh and its decision boundary is similar to the one of SVM (well generalized version). Tanh looks overfitting.

simple XOR pattern with 3 hidden layers

This is just a trial for evaluating an effect of the number of hidden layers. Prior to this trial, I think its number may affect a bit results of classification… so, how was it?

Tanh

Rectifier

Both of decision boundaries look getting more overfit than ones with 2 hidden layers, but seem to well classify samples.

complex XOR pattern with 3 hidden layers

Tanh

Recitifier

I feel like joking. :) Tanh looks almost never working. Rectifier classified well but seems less generalized although its decision boundary looks not so overfitting.

Conclusion

The most important lesson that I learned from a series of these trials is that performance of Deep Learning would strongly depend on parameter tuning, including choosing which activation function, the number of hidden layers and/or the number of units of each layer.

I think this feature has been also known as an important feature of traditional neural network (with only a hidden layer). From the result here, I guess its characteristics are taken over by Deep Learning, although hidden layers in Deep Learning in early layers behave just as “preprocesser” or “feature generator” but not conventional classifiers.

My conclusion here is simple; be much careful about parameter tuning for Deep Learning. It can easily boost your result, but at the same time it can spoil your classifier.

  • *1:Of course here I think the latest topic of Deep Learning is “ConvNet” or convolutional neural network with convolution and max pooling
  • *2:I believe almost all of readers of this blog already installed it…

Bio: Takashi J. OZAKI, Ph. D. is a Data scientist, Quant analyst & researcher.

Original, reposted by permission.

Related:

 


Most popular last 30 days

Most viewed last 30 days

  1. Top 20 Python Machine Learning Open Source Projects - Jun 1, 2015.
  2. R vs Python for Data Science: The Winner is ... - May 26, 2015.
  3. R leads RapidMiner, Python catches up, Big Data tools grow, Spark ignites - May 25, 2015.
  4. Top 10 Data Mining Algorithms, Explained - May 21, 2015.
  5. Poll: What Predictive Analytics, Data Mining, Data Science software/tools you used in the past 12 months? - May 7, 2015.
  6. 7 Steps for Learning Data Mining and Data Science - Oct 10, 2013.
  7. Top 10 Data Analysis Tools for Business - Jun 13, 2014.
  8. 9 Must-Have Skills You Need to Become a Data Scientist - Nov 22, 2014.
  9. Seven Techniques for Data Dimensionality Reduction - May 14, 2015.
  10. 21 Essential Data Visualization Tools - May 28, 2015.

Most shared last 30 days

  1. Top 20 Python Machine Learning Open Source Projects - Jun 1, 2015.
  2. R vs Python for Data Science: The Winner is ... - May 26, 2015.
  3. R leads RapidMiner, Python catches up, Big Data tools grow, Spark ignites - May 25, 2015.
  4. Which Big Data, Data Mining, and Data Science Tools go together? - Jun 11, 2015.
  5. Top 10 Data Mining Algorithms, Explained - May 21, 2015.
  6. Seven Techniques for Data Dimensionality Reduction - May 14, 2015.
  7. 150 Most Influential People in Big Data & Hadoop - May 27, 2015.
  8. Exclusive Interview: Matei Zaharia, creator of Apache Spark, on Spark, Hadoop, Flink, and Big Data in 2020 - May 22, 2015.
  9. Will the Real Data Scientists Please Stand Up? - May 18, 2015.
  10. R vs Python, why each is better - May 19, 2015.

Decision Boundaries for Deep Learning and other Machine Learning classifiers的更多相关文章

  1. 《MATLAB Deep Learning:With Machine Learning,Neural Networks and Artificial Intelligence》选记

    一.Training of a Single-Layer Neural Network 1 Delta Rule Consider a single-layer neural network, as ...

  2. Coursera Deep Learning 3 Structuring Machine Learning Projects, ML Strategy

    Why ML stategy 怎么提高预测准确度?有了stategy就知道从哪些地方入手,而不至于找错方向做无用功. Satisficing and Optimizing metric 上图中,run ...

  3. 机器学习分支:active learning、incremental learning、online machine learning

    1. active learning Active learning 是一种特殊形式的半监督机器学习方法,该方法允许交互式地询问用户(或者其他形式的信息源 information source)以获取 ...

  4. 【机器学习 Azure Machine Learning】Azure Machine Learning 访问SQL Server 无法写入问题 (使用微软Python AML Core SDK)

    问题情形 使用Python SDK在连接到数据库后,连接数据库获取数据成功,但是在Pandas中用 to_sql 反写会数据库时候报错.错误信息为:ProgrammingError: ('42000' ...

  5. 机器学习(Machine Learning)&深度学习(Deep Learning)资料(Chapter 2)

    ##机器学习(Machine Learning)&深度学习(Deep Learning)资料(Chapter 2)---#####注:机器学习资料[篇目一](https://github.co ...

  6. 学习笔记之Machine Learning Crash Course | Google Developers

    Machine Learning Crash Course  |  Google Developers https://developers.google.com/machine-learning/c ...

  7. 【机器学习Machine Learning】资料大全

    昨天总结了深度学习的资料,今天把机器学习的资料也总结一下(友情提示:有些网站需要"科学上网"^_^) 推荐几本好书: 1.Pattern Recognition and Machi ...

  8. [Machine Learning] 国外程序员整理的机器学习资源大全

    本文汇编了一些机器学习领域的框架.库以及软件(按编程语言排序). 1. C++ 1.1 计算机视觉 CCV —基于C语言/提供缓存/核心的机器视觉库,新颖的机器视觉库 OpenCV—它提供C++, C ...

  9. Machine Learning for Developers

    Machine Learning for Developers Most developers these days have heard of machine learning, but when ...

随机推荐

  1. tab选项卡

    1 <!doctype html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.or ...

  2. 关于ER图和UML图之间的对比

    ER图与UML图 ER图:实体-联系图(Entity-Relation Diagram)用来建立数据模型,在数据库系统概论中属于概念设计阶段,ER图提供了表示实体(即数据对象).属性和联系的方法,用来 ...

  3. 【暴力模拟】UVA 1594 - Ducci Sequence

    想麻烦了.这题真的那么水啊..直接暴力模拟,1000次(看了网上的200次就能A)后判断是否全为0,否则就是LOOP: #include <iostream> #include <s ...

  4. PHP中长连接的实现

    最近遇到PHP程序在执行大量数据的时候提示超时,于是用到了set_time_limit()函数来设置PHP页面的最大运行时间. 设置允许脚本运行的秒数.如果这是默认的,该脚本返回一个致命的错误.默认限 ...

  5. iis7下.Net框架版本设置

    转载:http://blog.163.com/fan_yishan/blog/static/47692213201391651229542/ Win7下IIS网站的.Net框架版本设置 步骤/方法 1 ...

  6. onActivityResult调用不到的问题

    有可能是调用时机不对,请转移到: http://www.cnblogs.com/shaweng/p/3875825.html 还有可能是Activity的launchmode导致的 使用 androi ...

  7. linux下设置mysql数据库字符集utf8

    mysql中文乱码解决方法:将mysql数据库编码统一utf8 查看数据库编码: show variables like 'character%'; 编辑/etc/my.cnf [mysql] def ...

  8. 页面加载后的input change事件 1或2个框 ajax

    数据层没有,js和bll直接链接,数据层用的hqew. js: window.onload = function () { //型号input 改变 事件 $("#typeofproduct ...

  9. 怎么用程序获取远程url执行后的图片地址

    远程URL:https://121.199.16.229:8890/generate.cgi?rbid=1001&esn=22021434025005&pic=png&coun ...

  10. Jqery之select操作

    jquery获取select选择的文本与值 获取select : 获取select 选中的 text :     $("#ddlregtype").find("optio ...