杂题 SPOJ MOBILE2 - Mobiles
MOBILE2 - Mobiles
You have been asked to buy a gift for your baby brother, Ike. However, you have noticed that Ike has a very particular taste in gifts. He only likes gifts that are configured in his particular style.
You have found a shop that sells mobiles. A mobile is a multi-layered decoration that is typically hung from the roof. Each mobile consists of a series of horizontal rods connected by vertical wires. Each rod has a wire hanging from both ends, which holds either another horizontal rod or a toy.
A sample mobile is shown below:
To satisfy your brother, you need to find a mobile that can be reconfigured so that:
(i) any two toys are either at the same level (that is, joined to the roof by the same number of rods), or di.er by only one level;
(ii) for any two toys that differ by one level, the toy to the left is further down than the toy to the right.
Mobiles can be reconfigured by performing swaps. A swap involves taking some rod, unhooking whatever is hanging beneath the left and right ends, and reattaching them at opposite ends (that is, the right and left ends respectively). This process does not modify the ordering of any rods or toys further down.
Since you are training for the Informatics Olympiad, you decide to write a program to test whether a given mobile can be reconfigured into a gift that Ike will like!
As an example, consider the mobile illustrated earlier. Ike will not like this mobile. Although it satisfies condition (i), it breaks condition (ii) — the toy at the leftmost end is at a higher level than the toys to its right.
However, the mobile can be reconfigured into a mobile that Ike will like. The following swaps are required:
1. First, the left and right ends of rod 1 are swapped. This exchanges the positions of rods 2 and 3, resulting in the following configuration:
2. Second, and finally, the left and right ends of rod 2 are swapped. This moves rod 4 to the left end of rod 2, and the toy to the right end of rod 2.
It can be seen that this final mobile satisfies Ike's requirements. All toys are at most one level apart, and the toys at a lower level are further to the left than the toys at a higher level.
Your task is, given a description of a mobile, to determine the smallest number of swaps required to reconfigure it so that Ike will like it (if this is possible). You may assume that the toys can never get in each other's way.
Input
Multiple test cases, the number of them will be given at the very first line.
For each test case:
The first line of input will contain the single integer n (1 <= n <= 100 000) representing the number of rods in the mobile. The rods are numbered 1, 2 , ..., n.
The following n lines will describe the connections for each rod. Specifically, the ith of these lines will describe rod i. Each of these lines will contain two integers l r separated by a single space, indicating what is hung beneath the left and right ends of the rod respectively. If a toy is hung beneath this rod, the corresponding integer l or r will be -1. Otherwise the integer l or r will be the number of a rod that is hung beneath this rod.
If there are any rods hanging beneath rod i, these rods will have numbers strictly greater than i. Rod 1 is the single rod at the top of the mobile.
Output
Output should consist of a single line containing a single integer, giving the smallest number of swaps required to reconfigure the mobile according to Ike's constraints. If this is not possible, you should output the integer -1.
Example
Input:
1
6
2 3
-1 4
5 6
-1 -1
-1 -1
-1 -1 Output:
2
Warning: large input/output data,be careful with certain languages
今天考试就考了这道题目。
写了很久,最后还是写对了。
Windows下要注意递归会爆栈!!!!!(结果扣两分)
#include <iostream>
#include <cstdio>
using namespace std;
const int maxn=;
int ls[maxn],rs[maxn];
int Max[maxn],Min[maxn],dep[maxn];
int n;
bool DFS(int node,int d)
{
if(d>)return false;
if(node==-)return true;
bool OK=true;
dep[node]=d;
OK&=DFS(ls[node],d+);
OK&=DFS(rs[node],d+);
Max[node]=max(Max[ls[node]],Max[rs[node]])+;
Min[node]=min(Min[ls[node]],Min[rs[node]])+;
}
int ans;
int DFS2(int node)
{
if(dep[node]==Min[])
{
if(ls[node]==-&&rs[node]==-)
return ;
else if(ls[node]!=-&&rs[node]!=-)
return ;
else {
if(ls[node]==-)ans++;
return -;
}
}
int d1=DFS2(ls[node]);
int d2=DFS2(rs[node]);
if(d1==-&&d2==||d1==&&d2==||d1==&&d2==-)ans++;
if(d1==-||d2==-||d1==-&&d2==-)return -;
if(d1==d2)return d1;
else return -;
}
int main()
{
scanf("%d",&n);
for(int i=;i<=n;i++)
scanf("%d%d",&ls[i],&rs[i]);
int tot=;
if(!DFS(,)||Max[]-Min[]>||DFS2()==-){
printf("-1\n");
return ;
} printf("%d\n",ans);
return ;
}
杂题 SPOJ MOBILE2 - Mobiles的更多相关文章
- 正睿OI DAY3 杂题选讲
正睿OI DAY3 杂题选讲 CodeChef MSTONES n个点,可以构造7条直线使得每个点都在直线上,找到一条直线使得上面的点最多 随机化算法,check到答案的概率为\(1/49\) \(n ...
- dp杂题(根据个人进度选更)
----19.7.30 今天又开了一个新专题,dp杂题,我依旧按照之前一样,这一个专题更在一起,根据个人进度选更题目; dp就是动态规划,本人认为,动态规划的核心就是dp状态的设立以及dp转移方程的推 ...
- wangkoala杂题总集(根据个人进度选更)
CQOI2014 数三角形 首先一看题,先容斥一波,求出网格内选三个点所有的情况,也就是C(n*m,3);然后抛出行里三点共线的方案数:C(n,3)*m; 同理就有列中三点共线的方案数:n*C(m,3 ...
- 2019暑期金华集训 Day6 杂题选讲
自闭集训 Day6 杂题选讲 CF round 469 E 发现一个数不可能取两次,因为1,1不如1,2. 发现不可能选一个数的正负,因为1,-1不如1,-2. hihoCoder挑战赛29 D 设\ ...
- Atcoder&CodeForces杂题11.7
Preface 又自己开了场CF/Atcoder杂题,比昨天的稍难,题目也更有趣了 昨晚炉石检验血统果然是非洲人... 希望这是给NOIP2018续点rp吧 A.CF1068C-Colored Roo ...
- Codeforces 杂题集 2.0
记录一些没有写在其他随笔中的 Codeforces 杂题, 以 Problemset 题号排序 1326D2 - Prefix-Suffix Palindrome (Hard version) ...
- 【Java面试】-- 杂题
杂题 2019-11-03 21:09:37 by冲冲 1.类加载器的双亲委派机制 类加载器:把类通过类加载器加载到JVM中,然后转换成class对象(通过类的全路径来找到这个类). 双亲委派机制 ...
- 贪心/构造/DP 杂题选做Ⅱ
由于换了台电脑,而我的贪心 & 构造能力依然很拉跨,所以决定再开一个坑( 前传: 贪心/构造/DP 杂题选做 u1s1 我预感还有Ⅲ(欸,这不是我在多项式Ⅱ中说过的原话吗) 24. P5912 ...
- 贪心/构造/DP 杂题选做Ⅲ
颓!颓!颓!(bushi 前传: 贪心/构造/DP 杂题选做 贪心/构造/DP 杂题选做Ⅱ 51. CF758E Broken Tree 讲个笑话,这道题是 11.3 模拟赛的 T2,模拟赛里那道题的 ...
随机推荐
- C# Socket通信 小案例
本文将编写2个控制台应用程序,一个是服务器端(server),一个是客户端(client), 通过server的监听,有新的client连接后,接收client发出的信息. server代码如下: u ...
- 11.1 morning
完美的序列(sequence)Time Limit:1000ms Memory Limit:64MB题目描述LYK 认为一个完美的序列要满足这样的条件:对于任意两个位置上的数都不相同.然而并不是所有的 ...
- C# 泛型2
我们在编写程序时,经常遇到两个模块的功能非常相似,只是一个是处理int数据,另一个是处理string数据,或者其他自定义的数据类型,但我们没有办法,只能分别写多个方法处理每个数据类型,因为方法的参数类 ...
- javascript基础学习(八)
javascript之日期对象 学习要点: 日期对象 将日期对象转换为字符串 将日期对象中的日期和时间转换为字符串 日期对象中的日期 日期对象中的时间 设置日期对象中的日期 设置日期对象中的时间 与毫 ...
- 掌握JS
1.原生的js,好比全真教的武功,一步步从基础开始(先练气再御剑),很长一段时间内和jquery有很大差距,掌握以后发现jquery只不过是另外一种武功,看一遍既会.且当学原生到一定程度之后,可以自创 ...
- 静态方法块 static 以及对象属性&类属性的用法
使用静态块的好处:只要在类被加载时,static块就会被调用,整个过程就调用这么一次,不会在后面的对象处又不断的调用.如果不使用它,就会出现如下问题:new一个对象,我就要调用一次所需的这些内容,重复 ...
- 使用gSoap规避和修改ONVIF标准类型结构的解析
ONVIF/gSoap依赖关系及问题 ONVIF是一组服务规范,标准参考 gSoap是一套基于实现SOAP通信接口的工具链 即是,当我们需要访问ONVIF的Web Service或实现对ONVIF部分 ...
- Getopt::Long 模块的简单使用
用法简介 1.带值参数传入程序内部 ※参数类型:整数, 浮点数, 字串 GetOptions( 'tag=s' => \$tag ); ‘=’表示此参数一定要有参数值, 若改用’:'代替表示参数 ...
- 第七篇、Nginx Install On Mac
方式一: 在mac上安装nginx,依次安装对应的依赖 pcre ./configure --prefix=/usr/local/pcre-8.37 --libdir=/usr/local/lib/p ...
- Bootstrap_Javascript_滚动监视器
滚动监控器是Bootstrap提供的非常实用的JavaScript插件,被广泛应用到Web开发中.其表现形式是: 1.当用户鼠标滚动时,滚动条的位置会自动更新导航条中相应的导航项. 2.用户拖动滚动条 ...