In this problem, you have to analyze a particular sorting algorithm. The algorithm processes a sequence of n distinct integers by swapping two adjacent sequence elements until the sequence is sorted in ascending order. For the input sequence 
9 1 0 5 4 ,
Ultra-QuickSort produces the output 
0 1 4 5 9 .
Your task is to determine how many swap operations Ultra-QuickSort needs to perform in order to sort a given input sequence.

Input

The input contains several test cases. Every test case begins with a line that contains a single integer n < 500,000 -- the length of the input sequence. Each of the the following n lines contains a single integer 0 ≤ a[i] ≤ 999,999,999, the i-th input sequence element. Input is terminated by a sequence of length n = 0. This sequence must not be processed.

Output

For every input sequence, your program prints a single line containing an integer number op, the minimum number of swap operations necessary to sort the given input sequence.

Sample Input

5
9
1
0
5
4
3
1
2
3
0

Sample Output

6
0 解题思路:这个题目求的就是一串数的逆序数,但是必须用到归并排序,归并:关键在于如何把两个有序表合成一个,每次只需要把两个序列的最小元素加以比较,删除其中的较小元素并加入合并后的新表即可。思路:先把序列分成元素个数尽量相等的两半,r,l在两边尽量控制逆序对的个数,对于右边的每个数,统计左边比它大的个数。
程序代码:
#include<iostream>
#include<cstdio>
using namespace std;
long long cnt;
int A[],T[];
void merge_sort(int l,int r)
{
if(r-l>)
{
int m=l+(r-l)/;
int p=l,q=m,i=l;
merge_sort(l,m);
merge_sort(m,r);
while(p<m || q<r)
{
if(q>=r || (p<m && A[p]<=A[q]) ) T[i++]=A[p++];
else {
T[i++]=A[q++];
cnt+=m-p;
}
}
for(i=l;i<r;++i) A[i]=T[i];
}
}
int main()
{
int n;
while(cin>>n&&n)
{
cnt=;
for(int i=;i<n;++i)
scanf("%d",&A[i]);
merge_sort(,n);
cout<<cnt<<endl;
}
return ;
}

高效算法——A 归并排序的更多相关文章

  1. Java常见排序算法之归并排序

    在学习算法的过程中,我们难免会接触很多和排序相关的算法.总而言之,对于任何编程人员来说,基本的排序算法是必须要掌握的. 从今天开始,我们将要进行基本的排序算法的讲解.Are you ready?Let ...

  2. 深入N皇后问题的两个最高效算法的详解 分类: C/C++ 2014-11-08 17:22 117人阅读 评论(0) 收藏

    N皇后问题是一个经典的问题,在一个N*N的棋盘上放置N个皇后,每行一个并使其不能互相攻击(同一行.同一列.同一斜线上的皇后都会自动攻击). 一. 求解N皇后问题是算法中回溯法应用的一个经典案例 回溯算 ...

  3. 【DS】排序算法之归并排序(Merge Sort)

    一.算法思想 归并排序是建立在归并操作上的一种有效的排序算法.该算法是采用分治法的一个非常典型的应用,指的是将两个已经排序的序列合并成一个序列的操作.其归并思想如下: 1)申请空间,使其大小为两个已经 ...

  4. 排序算法之归并排序(Mergesort)解析

    转自:http://www.cnblogs.com/ayqy/p/4050452.html   一.归并排序的优缺点(pros and cons) 耗费心思来理解它,总要有个理由吧: 归并排序的效率达 ...

  5. Python排序搜索基本算法之归并排序实例分析

    Python排序搜索基本算法之归并排序实例分析 本文实例讲述了Python排序搜索基本算法之归并排序.分享给大家供大家参考,具体如下: 归并排序最令人兴奋的特点是:不论输入是什么样的,它对N个元素的序 ...

  6. CVPR2020论文介绍: 3D 目标检测高效算法

    CVPR2020论文介绍: 3D 目标检测高效算法 CVPR 2020: Structure Aware Single-Stage 3D Object Detection from Point Clo ...

  7. 用Java写算法之归并排序

    转自:http://flyingcat2013.blog.51cto.com/7061638/1281026 前面的三种排序算法(冒泡排序,选择排序,插入排序)在平均情况下均为O(n^2)复杂度,在处 ...

  8. JavaScript算法(归并排序与快速排序)

    归并排序与快速排序这两个算法放在一起,也是因为时间复杂度都是对数级别的. 目前看过的资料,归并排序看<学习JavaScript数据结构与算法>介绍的归并排序吧,快速排序直接看百度百科,讲的 ...

  9. 【前端也要学点算法】 归并排序的JavaScript实现

    前文我们了解了快速排序算法的实现,本文我们来了解下另一种流行的排序算法-归并排序算法. 我们先来回顾下快排.快排的核心是找出一个基准元素,把数组中比该元素小的放到左边数组,比该元素大的放到右边数组,如 ...

随机推荐

  1. memcached并发处理

    memcached(十八)并发原语CAS与GETS操作 Memcached 并发控制 CAS 协议 memcache控制高并发问题 使用memcached进行并发控制 memcached的最佳实践方案

  2. Sql server 数据库中,纯SQL语句查询、执行 单引号问题。

    在默认值情况下, select 'abc',Titile from tb_Name;  ---输出内容 是abc: 如果想输出 单引号 'abc,需要使用select '''abc',Titile f ...

  3. jQuery实现的向下推送图文信息滚动效果

    HTML 我们以新浪微博信息滚动为背景,html中包含了多条微博图文信息,结构如下: <div id="con"> <ul> <li> < ...

  4. IE6双倍margin间距解决方案

          问题:在IE6下如果某个标签使用了float属性,同时设置了其外补丁“margin:10px 0 0 10px”可以看出,上边距和左边距同样为10px,但第一个对象距左边有20px. 解决 ...

  5. Python中%s和%r的区别

    早先使用Python工作的时候,对于格式化输出%s和%r的使用都是混着用的. 这一次就出错了: cu.execute("insert into ipPool values(null, '%r ...

  6. 最全Media 响应式 设置方法

    大家对于css3中media属性并不陌生,但是随着一些高视网膜的设备面世,很多情况对于media的不标准的用法也越来越多,我通过查找一些知识结合实践给总结出一些标准的设置的方法. CSS3 中的 Me ...

  7. 常见ORACLE错误,及解决方案(遇则即时更新)

    1.当登陆时提示“ORA-03113:通信通道的文件结束”时:        解决方案:                     需在X:\oraclexe\app\oracle\product\10 ...

  8. request.getContextPath获取绝对路径

    request.getContextPath获取绝对路径 博客分类: 经验+注意 其他 request.getContextPath 项目需求:所有jsp页必须通过Action转发,不能直接在地址栏链 ...

  9. Bootstrap_表单_表单控件状态

    一.焦点状态 焦点状态是通过伪类“:focus”来实现.Bootstrap框架中表单控件的焦点状态删除了outline的默认样式,重新添加阴影效果. <form role="form& ...

  10. AspNet WebApi : MessageHandler(消息处理器 )

    1. Http Message Handler WebApi中的MessageHandler类似MVC中的filter,可用于请求/响应到达真正目标前对请求或者响应进行修改,比如:用户身份验证,请求头 ...